3 research outputs found

    Inhibition of Effector Function but Not T Cell Activation and Increase in FoxP3 Expression in T Cells Differentiated in the Presence of PP14

    Get PDF
    Background: T-helper polarization of naรฏve T cells is determined by a complex mechanism that involves many factors, eventually leading to activation of Th1, Th2, or Th17 responses or alternatively the generation of regulatory T cells. Placental Protein 14 (PP14) is a 28 kDa glycoprotein highly secreted in early pregnancy that is able to desensitize T cell receptor (TCR) signaling and modulate T cell activation. Methodology/Principal Findings: Prolonged antigen-specific stimulation of T cells in the presence of PP14 resulted in an impaired secretion of IFN-c, IL-5 and IL-17 upon restimulation, although the cells proliferated and expressed activation markers. Furthermore, the generation of regulatory CD4 + CD25 high Foxp3 + T cells was induced in the presence of PP14, in both antigen-specific as well as polyclonal stimulation. In accordance with previous reports, we found that the induction of FoxP3 expression by PP14 is accompanied by down regulation of the PI3K-mTOR signaling pathway. Conclusions/Significance: These data suggest that PP14 arrests T cells in a unique activated state that is not accompanied with the acquisition of effector function, together with promoting the generation of regulatory T cells. Taken together, our results may elucidate the role of PP14 in supporting immune tolerance in pregnancy by reducing T cell effector function

    Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro

    Get PDF
    Background: Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. Methods: Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) ฮฑ via western blot. Results: PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPฮฑ was deglycosylated in monocytes, but not in PMNs, after bacterial infection. Conclusions: Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPฮฑ may be involved in this process
    corecore