25 research outputs found

    Inpatient telemedicine and new models of care during COVID-19: hospital design strategies to enhance patient and staff safety

    Get PDF
    The challenges of the COVID-19 pandemic have led to the development of new hospital design strategies and models of care. To enhance staff safety while preserving patient safety and quality of care, hospitals have created a new model of remote inpatient care using telemedicine technologies. The design of the COVID-19 units divided the space into contaminated and clean zones and integrated a control room with audio-visual technologies to remotely supervise, communicate, and support the care being provided in the contaminated zone. The research is based on semi-structured interviews and observations of care processes that implemented a new model of inpatient telemedicine at Sheba Medical Center in Israel in different COVID-19 units, including an intensive care unit (ICU) and internal medicine unit (IMU). The study examines the impact of the diverse design layouts of the different units associated with the implementation of digital technologies for remote care on patient and staff safety. The results demonstrate the challenges and opportunities of integrating inpatient telemedicine for critical and intermediate care to enhance patient and staff safety. We contribute insights into the design of hospital units to support new models of remote care and suggest implications for Evidence-based Design (EBD), which will guide much needed future research

    A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP

    Get PDF
    A female offspring of consanguineous parents, showed features of Wiskott-Aldrich syndrome (WAS), including recurrent infections, eczema, thrombocytopenia, defective T cell proliferation and chemotaxis, and impaired natural killer cell function. Cells from this patient had undetectable WAS protein (WASP), but normal WAS sequence and messenger RNA levels. WASP interacting protein (WIP), which stabilizes WASP, was also undetectable. A homozygous c.1301C>G stop codon mutation was found in the WIPF1 gene, which encodes WIP. Introduction of WIP into the patient’s T cells restored WASP expression. These findings indicate that WIP deficiency should be suspected in patients with features of WAS in whom WAS sequence and mRNA levels are normal

    DNA Nicks Promote Efficient and Safe Targeted Gene Correction

    Get PDF
    Targeted gene correction employs a site-specific DNA lesion to promote homologous recombination that eliminates mutation in a disease gene of interest. The double-strand break typically used to initiate correction can also result in genomic instability if deleterious repair occurs rather than gene correction, possibly compromising the safety of targeted gene correction. Here we show that single-strand breaks (nicks) and double-strand breaks both promote efficient gene correction. However, breaks promote high levels of inadvertent but heritable genomic alterations both locally and elsewhere in the genome, while nicks are accompanied by essentially no collateral local mutagenesis, and thus provide a safer approach to gene correction. Defining efficacy as the ratio of gene correction to local deletion, nicks initiate gene correction with 70-fold greater efficacy than do double-strand breaks (29.0±6.0% and 0.42±0.03%, respectively). Thus nicks initiate efficient gene correction, with limited local mutagenesis. These results have clear therapeutic implications, and should inform future design of meganucleases for targeted gene correction

    FMR1 Genotype with Autoimmunity-Associated Polycystic Ovary-Like Phenotype and Decreased Pregnancy Chance

    Get PDF
    The FMR1 gene partially appears to control ovarian reserve, with a specific ovarian sub-genotype statistically associated with a polycystic ovary (PCO)- like phenotype. Some forms of PCO have been associated with autoimmunity. We, therefore, investigated in multiple regression analyses associations of ovary-specific FMR1 genotypes with autoimmunity and pregnancy chances (with in vitro fertilization, IVF) in 339 consecutive infertile women (455 IVF cycles), 75 with PCO-like phenotype, adjusted for age, race/ethnicity, medication dosage and number of oocytes retrieved. Patients included 183 (54.0%) with normal (norm) and 156 (46%) with heterozygous (het) FMR1 genotypes; 133 (39.2%) demonstrated laboratory evidence of autoimmunity: 51.1% of het-norm/low, 38.3% of norm and 24.2% het-norm/high genotype and sub-genotypes demonstrated autoimmunity (p = 0.003). Prevalence of autoimmunity increased further in PCO-like phenotype patients with het-norm/low genotype (83.3%), remained unchanged with norm (34.0%) and decreased in het-norm/high women (10.0%; P<0.0001). Pregnancy rates were significantly higher with norm (38.6%) than het-norm/low (22.2%, p = 0.001). FMR1 sub-genotype het-norm/low is strongly associated with autoimmunity and decreased pregnancy chances in IVF, reaffirming the importance of the distal long arm of the X chromosome (FMR1 maps at Xq27.3) for autoimmunity, ovarian function and, likely, pregnancy chance with IVF
    corecore