2,196 research outputs found
Microbial biofilms: biosurfactants as antibiofilm agents.
Current microbial inhibition strategies based on planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilm communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. All aspects of biofilm measurement, monitoring, dispersal, control, and inhibition are becoming issues of increasing importance. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms in addition to many other advantages. The dispersal properties of biosurfactants have been shown to rival those of conventional inhibitory agents against bacterial and yeast biofilms. This makes them suitable candidates for use in new generations of microbial dispersal agents and for use as adjuvants for existing microbial suppression or eradication strategies. In this review, we explore aspects of biofilm characteristics and examine the contribution of biologically derived surface-active agents (biosurfactants) to the disruption or inhibition of microbial biofilms
Pseudomonas aeruginosa biofilm disruption using microbial surfactants.
AIMS: To establish the ability of the rhamnolipids biosurfactants from Pseudomonas aeruginosa, in the presence and absence of caprylic acid and ascorbic acid, to disrupt bacterial biofilms, compared with the anionic alkyl sulphate surfactant Sodium dodecyl sulphate (SDS). METHODS AND RESULTS: Pseudomonas aeruginosa ATCC 15442 biofilms were disrupted by rhamnolipids at concentrations between 0·5 and 0·4 g l(-1) and with SDS at 0·8 g l(-1) . The combination of rhamnolipids 0·4 g l(-1) and caprylic acid at 0·1 g l(-1) showed a remarkable effect on biofilm disruption and cell killing. After 30 min of treatment most of the biofilm was disrupted and cell viability was significantly reduced. Neither caprylic acid nor ascorbic acid has any effect on biofilm disruption at 0·1 g l(-1) . SDS is an effective antimicrobial agent; however, in the presence of caprylic acid its effect was neutralized. CONCLUSIONS: The results show that rhamnolipids at low concentration in the presence of caprylic acid are promising molecules for inhibition/disruption of biofilms formed by Ps. aeruginosa ATCC 15442. SIGNIFICANCE AND IMPACT OF THE STUDY: The disruption of biofilms has major significance in many industrial and domestic cleaning applications and in medical situations
Diffusive Release of Photosensitizing Agents (PS) from Novel PVA-Borate Semi-Solid Drug Carriers Through In Vitro Oral Streptococcus mutans Biofilm
Background: Streptococcus mutans, one of the agent of human dental caries, is particularly effective at forming biofilms on the hard tissues of the human oral cavity; the purpose of this study was to investigate and quantify the diffusional release of photosentising agents (PS): methylene blue (MB), toludine blue (TB), rose bengal (RB) and methyl orange (MO) from Polyvinyl alcohol (PVA)-borate semi-solid gels in the presence of in vitro oral Streptococcus mutans biofilm. Methods: S. mutans biofilm growths were ascertained to ensure proper dental plaque formation and were characterized using confocal microscopy. Release profiles for MB, TB, RB and MO-loaded PVA-borate semi-solids in the absence of biofilms were directly compared to their counterparts in the presence of S. mutans biofilms. In addition, their diffusion coefficients and resistances were determined. Results: The confocal imaging results showed that biofilms grown over a 5-day period had a generally uninterrupted film of colonies occupying the entire surface area of growth surface of a nylon mesh support with approximately 60 µm biofilm size. The overall diffusion resistance of all PVA-borate semi-solids in the presence of S. mutans biofilms was about 1.2 times lower than the diffusion resistance for PVAborate semi-solids in the absence of biofilms. The diffusion resistances for all studied PS, indicate that electrostatic forces and molecular size play an important part in controlled and sustained drug release from PVA-borate semi-solids. Conclusions: PVA-borate semi-solids as novel PSs carriers might offer an innovative delivery system in the treatment against Streptococcus mutans
Synthesis and biological activity of α-glucosyl C24:0 and C20:2 ceramides
a-Glucosyl ceramides 4 and 5 have been synthesised and evaluated for their ability to stimulate the activation
and expansion of human iNKT cells. The key challenge in the synthesis of both target molecules was the stereoselective synthesis of the a-glycosidic linkage. Of the methods examined, glycosylation using per-TMS-protected glucosyl iodide 16 was completely a-selective and provided gram quantities of amine 11, from which a-glucosyl ceramides 4 and 5 were obtained by N-acylation. a-GlcCer 4, containing a C24 saturated acyl chain, stimulated a marked proliferation and expansion of human circulating iNKT cells in short-term cultures. a-GlcCer 5, which contains a C20 11,14-cis-diene acyl chain (C20:2),induced extremely similar levels of iNKT cell activation and expansion
Specific organization of the negative response elements for retinoic acid and thyroid hormone receptors in keratin gene family
Retinoic acid and thyroid hormone are important regulators of epidermal growth, differentiation, and homeostasis, Retinoic acid is extensively used in the treatment of many epidermal disorders ranging from wrinkles to skin cancers. Retinoic acid and thyroid hormone directly control the transcription of differentiation-specific genes including keratins. Their effect is mediated through nuclear receptors RAR and T3R. We have previously identified the response element in the K14 gene, K14RARE/TRE, to which these receptors bind, and found that it consists of a cluster of five half-sites with variable spacing and orientation. To determine whether this specific structure is found in other keratin genes, we have mapped and analyzed the RARE/TRE elements in three additional epidermal keratin genes: K5, K6, and K17. We used three different approaches to identify these elements: co-transfection of promoter deletion constructs, gel-shift assays, and site-specific mutagenesis. We localized the RARE/TRE elements relatively close to the TATA box in all three promoters. All three RARE/TRE elements have a similar structural organization: they consist of clusters of 3-6 half-sites with variable spacing and orientation. This means that the clustered structure of the RARE/TREs is a common characteristic for keratin genes. RARE and TRE in the K5 promoter are adjacent to each other whereas in the K17 promoter they overlap. All three keratin REs bind specifically both RAR and T3R in gel-shift assays. Interestingly, addition of ligand to the receptor changes the binding pattern of the T3R from homodimer to monomer, reflecting the change in regulation from induction to inhibition
A Close Nuclear Black Hole Pair in the Spiral Galaxy NGC 3393
The current picture of galaxy evolution advocates co-evolution of galaxies
and their nuclear massive black holes (MBHs), through accretion and merging.
Quasar pairs (6,000-300,000 light-years separation) exemplify the first stages
of this gravitational interaction. The final stages, through binary MBHs and
final collapse with gravitational wave emission, are consistent with the
sub-light-year separation MBHs inferred from optical spectra and
light-variability of two quasars. The double active nuclei of few nearby
galaxies with disrupted morphology and intense star formation (e.g., NGC 6240
and Mkn 463; ~2,400 and ~12,000 light-years separation respectively)
demonstrate the importance of major mergers of equal mass spirals in this
evolution, leading to an elliptical galaxy, as in the case of the double radio
nucleus (~15 light-years separation) elliptical 0402+379. Minor mergers of
galaxies with a smaller companion should be a more common occurrence, evolving
into spiral galaxies with active MBH pairs, but have hitherto not been seen.
Here we report the presence of two active MBHs, separated by ~430 light-years,
in the Seyfert galaxy NGC 3393. The regular spiral morphology and predominantly
old circum-nuclear stellar population of this galaxy, and the closeness of the
MBHs embedded in the bulge, suggest the result of minor merger evolution.Comment: Preprint (not final) version of a paper to appear in Natur
Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi impenetrable National Park, Uganda
Over 60 % of human emerging infectious diseases are zoonotic, and there is growing evidence of the zooanthroponotic transmission of diseases from humans to livestock and wildlife species, with major implications for public health, economics, and conservation. Zooanthroponoses are of relevance to critically endangered species; amongst these is the mountain gorilla (Gorilla beringei beringei) of Uganda. Here, we assess the occurrence of Cryptosporidium, Cyclospora, Giardia, and Entamoeba infecting mountain gorillas in the Bwindi Impenetrable National Park (BINP), Uganda, using molecular methods. We also assess the occurrence of these parasites in humans and livestock species living in overlapping/adjacent geographical regions
- …