377 research outputs found

    Does a small central Nd:YAG posterior capsulotomy improve peripheral fundal visualisation for the Vitreoretinal surgeon?

    Get PDF
    BACKGROUND: To evaluate the effect of Nd:YAG capsulotomy for posterior capsular opacification (PCO) on visualisation of the peripheral fundus with scleral indentation. METHODS: Patients undergoing Nd:YAG capsulotomy for PCO were examined pre- and four weeks post- Nd:YAG capsulotomy. In order to give a quantitative measure of visualisation of the peripheral retina, a novel scalar measurement was developed. Changes in the degree of visualisation following Nd:YAG capsulotomy were calculated. RESULTS: There was a significant improvement in fundal visualisation of the retinal periphery with scleral indentation following Nd:YAG capsulotomy (p = 0.001). CONCLUSION: Peripheral fundal visualisation with scleral indentation improves following a small central Nd:YAG capsulotomy. This finding is important in relation to the detection of peripheral pseudophakic retinal breaks, particularly in those patients deemed at high risk following Nd:YAG capsulotomy

    Twenty-four hour metabolic rate measurements utilized as a reference to evaluate several prediction equations for calculating energy requirements in healthy infants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To date, only short-duration metabolic rate measurements of less than four hours have been used to evaluate prediction equations for calculating energy requirements in healthy infants. Therefore, the objective of this analysis was to utilize direct 24-hour metabolic rate measurements from a prior study to evaluate the accuracy of several currently used prediction equations for calculating energy expenditure (EE) in healthy infants.</p> <p>Methods</p> <p>Data from 24-hour EE, resting (RMR) and sleeping (SMR) metabolic rates obtained from 10 healthy infants, served as a reference to evaluate 11 length-weight (LWT) and weight (WT) based prediction equations. Six prediction equations have been previously derived from 50 short-term EE measurements in the Enhanced Metabolic Testing Activity Chamber (EMTAC) for assessing 24-hour EE, (EMTACEE-LWT and EMTACEE-WT), RMR (EMTACRMR-LWT and EMTACRMR-WT) and SMR (EMTACSMR-LWT and EMTACSMR-WT). The last five additional prediction equations for calculating RMR consisted of the World Health Organization (WHO), the Schofield (SCH-LWT and SCH-WT) and the Oxford (OXFORD-LWT and OXFORD-WT). Paired t-tests and the Bland & Altman limit analysis were both applied to evaluate the performance of each equation in comparison to the reference data.</p> <p>Results</p> <p>24-hour EE, RMR and SMR calculated with the EMTACEE-WT, EMTACRMR-WT and both the EMTACSMR-LWT and EMTACSMR-WT prediction equations were similar, p = NS, to that obtained from the reference measurements. However, RMR calculated using the WHO, SCH-LWT, SCH-WT, OXFORD-LWT and OXFORD-WT prediction equations were not comparable to the direct 24-hour metabolic measurements (p < 0.05) obtained in the 10 reference infants. Moreover, the EMTACEE-LWT and EMTACRMR-LWT were also not similar (p < 0.05) to direct 24-hour metabolic measurements.</p> <p>Conclusions</p> <p>Weight based prediction equations, derived from short-duration EE measurements in the EMTAC, were accurate for calculating EE, RMR and SMR in healthy infants.</p
    • …
    corecore