5 research outputs found

    Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli

    Get PDF
    The use of carbon nanoparticles is shown for the detection and identification of different Shiga toxin-producing Escherichia coli virulence factors (vt1, vt2, eae and ehxA) and a 16S control (specific for E. coli) based on the use of lateral flow strips (nucleic acid lateral flow immunoassay, NALFIA). Prior to the detection with NALFIA, a rapid amplification method with tagged primers was applied. In the evaluation of the optimised NALFIA strips, no cross-reactivity was found for any of the antibodies used. The limit of detection was higher than for quantitative PCR (q-PCR), in most cases between 104 and 105 colony forming units/mL or 0.1–0.9 ng/μL DNA. NALFIA strips were applied to 48 isolates from cattle faeces, and results were compared to those achieved by q-PCR. E. coli virulence factors identified by NALFIA were in very good agreement with those observed in q-PCR, showing in most cases sensitivity and specificity values of 1.0 and an almost perfect agreement between both methods (kappa coefficient larger than 0.9). The results demonstrate that the screening method developed is reliable, cost-effective and user-friendly, and that the procedure is fast as the total time required is <1 h, which includes amplification

    Dual-allele dipstick assay for genotyping single nucleotide polymorphisms by primer extension reaction

    No full text
    We have developed a dry-reagent dipstick test for simultaneous visual detection of two alleles in single nucleotide polymorphisms (SNPs). The strip comprises two test zones and a control zone. Oligonucleotide-functionalized gold nanoparticles are used as reporters. PCR-amplified DNA that spans the interrogated sequence is subjected to primer extension (PEXT) reactions using allele-specific primers. Digoxigenin-dUTP and biotin-dUTP are incorporated in the extended fragments. The primers contain an oligo(dA) segment at the 5′ end. The PEXT products are applied to the sample area of the strip, which is then immersed in the appropriate buffer. As the buffer migrates along the strip by capillary action, the extension products of the two alleles are captured at the test zones from immobilized anti-digoxigenin and streptavidin, whereas the oligo(dA) segment of the primers hybridizes with oligo(dT) strands attached to gold nanoparticles, thus generating characteristic red lines. The excess nanoparticles are captured from immobilized oligo(dA) strands at the control zone of the strip. The test was applied to the genotyping of two SNPs of the Toll-like receptor 4 gene (Asp299Gly and Thr399Ile), one SNP of CYP2C19 gene (CYP2C19*3) and one SNP of the TPMT gene (TPMT*2). Contrary to most genotyping methods, the dipstick test does not require costly specialized equipment for detection of PEXT products. The PCR product is pipetted directly into the PEXT reaction mixture without prior purification. The high sensitivity of the strip allows completion of PEXT reaction in three cycles only (7 min). The visual detection of both alleles is complete in 15 min
    corecore