56 research outputs found

    TRPV1 in Brain Is Involved in Acetaminophen-Induced Antinociception

    Get PDF
    Background: Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular overthe- counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) by fatty acid amide hydrolase (FAAH) in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV1) in vitro. Pharmacological activation of TRPV1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV1 in the brain contributes to the analgesic effect of acetaminophen. Methodology/Principal Findings: Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E-2 (PGE(2)) and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test. Conclusions: This study shows that TRPV1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV1 in the brain

    Effects of peripheral nerve injury on parvalbumin expression in adult rat dorsal root ganglion neurons

    Get PDF
    Background: Parvalbumin (PV) is a calcium binding protein that identifies a subpopulation of proprioceptive dorsal root ganglion (DRG) neurons. Calcitonin gene-related peptide (CGRP) is also expressed in a high proportion of muscle afferents but its relationship to PV is unclear. Little is known of the phenotypic responses of muscle afferents to nerve injury. Sciatic nerve axotomy or L5 spinal nerve ligation and section (SNL) lesions were used to explore these issues in adult rats using immunocytochemistry. Results: In naive animals, the mean PV expression was 25 % of L4 or L5 dorsal root ganglion (DRG) neurons, and this was unchanged 2 weeks after sciatic nerve axotomy. Colocalization studies with the injury marker activating transcription factor 3 (ATF3) showed that approximately 24 % of PV neurons expressed ATF3 after sciatic nerve axotomy suggesting that PV may show a phenotypic switch from injured to uninjured neurons. This possibility was further assessed using the spinal nerve ligation (SNL) injury model where injured and uninjured neurons are located in different DRGs. Two weeks after L5 SNL there was no change in total PV staining and essentially all L5 PV neurons expressed ATF3. Additionally, there was no increase in PV-ir in the adjacent uninjured L4 DRG cells. Co-labelling of DRG neurons revealed that less than 2 % of PV neurons normally expressed CGRP and no colocalization was seen after injury. Conclusion: These experiments clearly show that axotomy does not produce down regulation of PV protein in the DRG. Moreover, this lack of change is not due to a phenotypic switch in PV immunoreactive (ir) neurons, or de novo expression of PV-ir in uninjured neurons after nerve injury. These results further illustrate differences that occur when muscle afferents are injured as compared to cutaneous afferents

    Role of interleukin-1beta in postoperative cognitive dysfunction.

    No full text
    OBJECTIVE: Although postoperative cognitive dysfunction (POCD) often complicates recovery from major surgery, the pathogenic mechanisms remain unknown. We explored whether systemic inflammation, in response to surgical trauma, triggers hippocampal inflammation and subsequent memory impairment, in a mouse model of orthopedic surgery. METHODS: C57BL/6J, knock out (lacking interleukin [IL]-1 receptor, IL-1R(-/-)) and wild type mice underwent surgery of the tibia under general anesthesia. Separate cohorts of animals were tested for memory function with fear conditioning tests, or euthanized at different times to assess levels of systemic and hippocampal cytokines and microglial activation; the effects of interventions, designed to interrupt inflammation (specifically and nonspecifically), were also assessed. RESULTS: Surgery caused hippocampal-dependent memory impairment that was associated with increased plasma cytokines, as well as reactive microgliosis and IL-1beta transcription and expression in the hippocampus. Nonspecific attenuation of innate immunity with minocycline prevented surgery-induced changes. Functional inhibition of IL-1beta, both in mice pretreated with IL-1 receptor antagonist and in IL-1R(-/-) mice, mitigated the neuroinflammatory effects of surgery and memory dysfunction. INTERPRETATION: A peripheral surgery-induced innate immune response triggers an IL-1beta-mediated inflammatory process in the hippocampus that underlies memory impairment. This may represent a viable target to interrupt the pathogenesis of postoperative cognitive dysfunction
    • …
    corecore