18 research outputs found

    Intralesional allogeneic adipose-derived stem cells application in chronic diabetic foot ulcer: Phase I/2 safety study

    No full text
    © 2020 European Foot and Ankle SocietyBackground: Impaired wound healing is a major cause of morbidity in diabetic patients by causing chronic ulcers. This study aimed to investigate the safety and outcomes after intralesional allogeneic adipose-derived mesenchymal stem cells injection in chronic diabetic foot ulcers. Methods: Twenty patients (12 male and eight female) were involved in the study. We randomized the patients into two groups of 10 patients each. The study group was treated with allogeneic adipose-derived mesenchymal stem cells injection with standard diabetic wound care. The control group received only standard diabetic wound care. Patient demographics, wound characteristics, wound closure time, amputation rates and clinical scores were evaluated. Results: The mean age was 57.3 ± 6.6 years. The mean follow-up duration was 48.0 (range, 26–50) months. Wound closure was achieved in 17 of 20 lesions (study group, 9 lesions; control group, 8 lesions; respectively). The mean time to wound closure was 31.0 ± 10.7 (range, 22–55) days in the study group, 54.8 + 15.0 (range, 30–78) days in the control group (p = 0.002). In three patients, minor amputations were performed (one patient in study group; two patients in the control group, p = 0.531). There was a significant difference between groups in terms of postoperative Short Form 36- physical functioning (p = 0.017) and Short Form 36-general health (p = 0.010). Conclusion: Allogeneic adipose-derived mesenchymal stem cells injection was found to be a safe and effective method with a positive contribution to wound-healing time in the treatment of chronic diabetic foot ulcers

    The Effect of Chronic Long-Term Intermittent Hypobaric Hypoxia on Bone Mineral Density in Rats: Role of Nitric Oxide

    No full text
    Intermittent hypoxia is the most common pattern of hypoxic exposure in humans. The effect of chronic long-term intermittent hypobaric hypoxia (CLTIHH) on bone metabolism is not investigated. We examined the effect of CLTIHH on bone metabolism and the role of nitric oxide (NO) in this process. The rats were divided into three groups in this study. The animals in groups I and II have been exposed to CLTIHH. The animals in group II were also treated with nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester. To obtain CLTIHH, rats were placed in a hypobaric chamber (430 mm Hg; 5 h/day, 5 days/week, 5 weeks). The group III (control) rats breathed room air in the same environment. At the begining of the experiments, bone mineral density (BMD) of the animals were measured, and blood samples were collected from the tail vein. After the 5-week CLTIHH period, the same measurements were repeated. Parathyroid hormone, calcium, phosphate, bone alkaline phosphatase (b-ALP), NO, interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha levels were determined. The cytokines, NO levels, and BMD in CLTIHH-induced rats were higher compared with baseline and control values. The cytokines, b-ALP, and BMD increased while NO levels decreased in the group II compared with baseline values. BMD values of group II were lower than group I but higher than control group. Our results suggested that CLTIHH has positive effects on bone density. Intermittent hypoxia protocols may be developed for treatment and prevention of osteopenia and osteoporosis

    Poster presentations.

    No full text
    corecore