5 research outputs found

    Relic neutrino masses and the highest energy cosmic rays

    Get PDF
    We consider the possibility that a large fraction of the ultrahigh energy cosmic rays are decay products of Z bosons which were produced in the scattering of ultrahigh energy cosmic neutrinos on cosmological relic neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with the one predicted in the above Z-burst scenario and determine the required mass of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic neutrino flux via a maximum likelihood analysis. We show that the value of the neutrino mass obtained in this way is fairly robust against variations in presently unknown quantities, like the amount of neutrino clustering, the universal radio background, and the extragalactic magnetic field, within their anticipated uncertainties. Much stronger systematics arises from different possible assumptions about the diffuse background of ordinary cosmic rays from unresolved astrophysical sources. In the most plausible case that these ordinary cosmic rays are protons of extragalactic origin, one is lead to a required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence level. This range narrows down considerably if a particular universal radio background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required flux of ultrahigh energy cosmic neutrinos near the resonant energy should be detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory, otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX

    Lepton Number Violation in TeV Scale See-Saw Extensions of the Standard Model

    Full text link
    The low-energy neutrino physics constraints on the TeV scale type I see-saw scenarios of neutrino mass generation are revisited. It is shown that lepton charge (L) violation, associated to the production and decays of heavy Majorana neutrinos N_{j} having masses in the range of M_j \sim (100 \div 1000) GeV and present in such scenarios, is hardly to be observed at ongoing and future particle accelerator experiments, LHC included, because of very strong constraints on the parameters and couplings responsible for the corresponding |\Delta L| = 2 processes. If the heavy Majorana neutrinos N_j are observed and they are associated only with the type I mechanism, they will behave effectively like pseudo-Dirac fermions. Conversely, the observation of effects proving the Majorana nature of N_j would imply that these heavy neutrinos have additional relatively strong couplings to the Standard Model particles or that light neutrino masses compatible with the observations are generated by a mechanism other than see-saw (e.g., radiatively at one or two loop level) in which the heavy Majorana neutrinos N_j are nevertheless involved.Comment: Contribution to the Proceedings of DISCRETE 2010- Symposium on Prospects in the Physics of Discrete Symmetries, 8 page

    Probing the seesaw mechanism with neutrino data and leptogenesis

    Get PDF
    In the framework of the seesaw mechanism with three heavy right-handed Majorana neutrinos and no Higgs triplets we carry out a systematic study of the structure of the right-handed neutrino sector. Using the current low-energy neutrino data as an input and assuming hierarchical Dirac-type neutrino masses mDim_{Di}, we calculate the masses MiM_i and the mixing of the heavy neutrinos. We confront the inferred properties of these neutrinos with the constraints coming from the requirement of a successful baryogenesis via leptogenesis. In the generic case the masses of the right-handed neutrinos are highly hierarchical: MimDi2M_i \propto m_{Di}^2; the lightest mass is M1103106M_1 \approx 10^3 - 10^6 GeV and the generated baryon-to-photon ratio ηB1014\eta_B\lesssim 10^{-14} is much smaller than the observed value. We find the special cases which correspond to the level crossing points, with maximal mixing between two quasi-degenerate right-handed neutrinos. Two level crossing conditions are obtained: mee0{m}_{ee}\approx 0 (1-2 crossing) and d120d_{12}\approx 0 (2-3 crossing), where mee{m}_{ee} and d12d_{12} are respectively the 11-entry and the 12-subdeterminant of the light neutrino mass matrix in the basis where the neutrino Yukawa couplings are diagonal. We show that sufficient lepton asymmetry can be produced only in the 1-2 crossing where M1M2108M_1 \approx M_2 \approx 10^{8} GeV, M31014M_3 \approx 10^{14} GeV and (M2M1)/M2105(M_2 - M_1)/ M_2 \lesssim 10^{-5}.Comment: 30 pages, 2 eps figures, JHEP3.cls, typos corrected, note (and references) added on non-thermal leptogenesi

    Direct Detection of Dark Matter in Supersymmetric Models

    Full text link
    We evaluate neutralino-nucleon scattering rates in several well-motivated supersymmetric models, and compare against constraints on the neutralino relic density, BF( b\to s\gamma ) as well as the muon anomalous magnetic moment a_\mu . In the mSUGRA model, the indirect constraints favor the hyperbolic branch/focus point (HB/FP) region of parameter space, and in fact this region is just where neutralino-nucleon scattering rates are high enough to be detected in direct dark matter search experiments! In Yukawa unified SUSY SO(10) models with scalar mass non-universality, the relic density of neutralinos is almost always above experimental bounds, while the corresponding direct detection rates are below experimental levels. Conversely, in five dimensional SO(10) models where gauge symmetry breaking is the result of compactification of the extra dimension, and supersymmetry breaking is communicated via gaugino mediation, the relic density is quite low, while direct detection rates can be substantial.Comment: 25 page latex file including 18 EPS figures; revised version with references added and cross sections rescaled; figures changed. A copy of the paper with better resolution figures can be found at http://www.hep.fsu.edu/~belyaev/projects/directz1
    corecore