5 research outputs found

    Circulation of intergenotype recombinant noroviruses GII.9/GII.6 from 2006 to 2011 in central Greece

    No full text
    Noroviruses (NoVs) are members of the Caliciviridae family and are recognized as a worldwide cause of acute nonbacterial gastroenteritis. Based on the genetic analysis of the RdRp and capsid regions, human NoVs are divided into three genogroups (Gs), GI, GII, and GIV, which further segregate into distinct lineages called genotypes. In this study, in an attempt to discern the circulation of an intergenotypic recombinant GII.9/GII.6, which was previously reported by our group in central Greece, we investigated NoVs in raw sewages from 2006 to 2011 and compared the results with the viruses detected from clinical samples in the same area and in the same time period. Two specific primer pairs for NoVs were designed which amplified in a single PCR fragment from polymerase to capsid gene covering the widespread recombination point in ORF1/ORF2 junction. Based on the genetic analysis, recombinant NoV strains GII.9/GII.6 were identified. Fourteen out of 15 environmental and eight out of ten clinical samples that were used in the present study were positive, with both primer pairs, confirming that the intergenotypic recombinant GII.9/GII.6 was circulating in the population of central Greece from 2006 to 2011. The crossover point was identified to be within the overlapping region of ORF1/ORF2 (GII.9/GII.6, respectively) and was determined by Simplot at nucleotide position 5,032 bp

    Molecular Detection and Genotyping of Noroviruses

    Full text link
    Noroviruses (NoVs) are a major cause of gastroenteritis worldwide in humans and animals and are known as very infectious viral agents. They are spread through feces and vomit via several transmission routes involving person-to-person contact, food, and water. Investigation of these transmission routes requires sensitive methods for detection of NoVs. As NoVs cannot be cultivated to date, detection of these viruses relies on the use of molecular methods such as (real-time) reverse transcriptase polymerase chain reaction (RT-PCR). Regardless of the matrix, detection of NoVs generally requires three subsequent steps: a virus extraction step, RNA purification, and molecular detection of the purified RNA, occasionally followed by molecular genotyping. The current review mainly focused on the molecular detection and genotyping of NoVs. The most conserved region in the genome of human infective NoVs is the ORF1/ORF2 junction and has been used as a preferred target region for molecular detection of NoVs by methods such as (real-time) RT-PCR, NASBA, and LAMP. In case of animal NoVs, broad range molecular assays have most frequently been applied for molecular detection. Regarding genotyping of NoVs, five regions situated in the polymerase and capsid genes have been used for conventional RT-PCR amplification and sequencing. As the expected levels of NoVs on food and in water are very low and inhibition of molecular methods can occur in these matrices, quality control including adequate positive and negative controls is an essential part of NoV detection. Although the development of molecular methods for NoV detection has certainly aided in the understanding of NoV transmission, it has also led to new problems such as the question whether low levels of human NoV detected on fresh produce and shellfish could pose a threat to public health. © 2012 Springer Science+Business Media New York

    Filaggrin Genotyping

    No full text
    corecore