192 research outputs found

    Mechanisms of Hybrid Oligomer Formation in the Pathogenesis of Combined Alzheimer's and Parkinson's Diseases

    Get PDF
    Background: Misfolding and pathological aggregation of neuronal proteins has been proposed to play a critical role in the pathogenesis of neurodegenerative disorders. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are frequent neurodegenerative diseases of the aging population. While progressive accumulation of amyloid b protein (Ab) oligomers has been identified as one of the central toxic events in AD, accumulation of a-synuclein (a-syn) resulting in the formation of oligomers and protofibrils has been linked to PD and Lewy body Disease (LBD). We have recently shown that Ab promotes a-syn aggregation and toxic conversion in vivo, suggesting that abnormal interactions between misfolded proteins might contribute to disease pathogenesis. However the molecular characteristics and consequences of these interactions are not completely clear. Methodology/Principal Findings: In order to understand the molecular mechanisms involved in potential Ab/a-syn interactions, immunoblot, molecular modeling, and in vitro studies with a-syn and Ab were performed. We showed in vivo in the brains of patients with AD/PD and in transgenic mice, Ab and a-synuclein co-immunoprecipitate and form complexes. Molecular modeling and simulations showed that Ab binds a-syn monomers, homodimers, and trimers, forming hybrid ringlike pentamers. Interactions occurred between the N-terminus of Ab and the N-terminus and C-terminus of a-syn. Interacting a-syn and Ab dimers that dock on the membrane incorporated additional a-syn molecules, leading to th

    Excision Repair Cross-Complementation Group 1 (ERCC1) Status and Lung Cancer Outcomes: A Meta-Analysis of Published Studies and Recommendations

    Get PDF
    Despite discrepant results on clinical utility, several trials are already prospectively randomizing non-small cell lung cancer (NSCLC) patients by ERCC1 status. We aimed to characterize the prognostic and predictive effect of ERCC1 by systematic review and meta-analysis.Eligible studies assessed survival and/or chemotherapy response in NSCLC or SCLC by ERCC1 status. Effect measures of interest were hazard ratio (HR) for survival or relative risk (RR) for chemotherapy response. Random-effects meta-analyses were used to account for between-study heterogeneity, with unadjusted/adjusted effect estimates considered separately.23 eligible studies provided survival results in 2,726 patients. Substantial heterogeneity was observed in all meta-analyses (I(2) always >30%), partly due to variability in thresholds defining 'low' and 'high' ERCC1. Meta-analysis of unadjusted estimates showed high ERCC1 was associated with significantly worse overall survival in platinum-treated NSCLC (average unadjusted HR = 1.61, 95%CI:1.23-2.1, p = 0.014), but not in NSCLC untreated with chemotherapy (average unadjusted HR = 0.82, 95%CI:0.51-1.31). Meta-analysis of adjusted estimates was limited by variable choice of adjustment factors and potential publication bias (Egger's p<0.0001). There was evidence that high ERCC1 was associated with reduced response to platinum (average RR = 0.80; 95%CI:0.64-0.99). SCLC data were inadequate to draw firm conclusions.Current evidence suggests high ERCC1 may adversely influence survival and response in platinum-treated NSCLC patients, but not in non-platinum treated, although definitive evidence of a predictive influence is lacking. International consensus is urgently required to provide consistent, validated ERCC1 assessment methodology. ERCC1 assessment for treatment selection should currently be restricted to, and evaluated within, clinical trials

    The Intensive Diet and Exercise for Arthritis (IDEA) trial: design and rationale

    Get PDF
    Background: Obesity is the most modifiable risk factor, and dietary induced weight loss potentially the best nonpharmacologic intervention to prevent or to slow osteoarthritis (OA) disease progression. We are currently conducting a study to test the hypothesis that intensive weight loss will reduce inflammation and joint loads sufficiently to alter disease progression, either with or without exercise. This article describes the intervention, the empirical evidence to support it, and test-retest reliability data. Methods/Design: This is a prospective, single-blind, randomized controlled trial. The study population consists of 450 overweight and obese (BMI = 27-40.5 kg/m2) older (age greater than or equal to 55 yrs) adults with tibiofemoral osteoarthritis. Participants are randomized to one of three 18-month interventions: intensive dietary restriction-plus-exercise; exercise-only; or intensive dietary restriction-only. The primary aims are to compare the effects of these interventions on inflammatory biomarkers and knee joint loads. Secondary aims will examine the effects of these interventions on function, pain, and mobility; the dose response to weight loss on disease progression; if inflammatory biomarkers and knee joint loads are mediators of the interventions; and the association between quadriceps strength and disease progression. Results: Test-retest reliability results indicated that the ICCs for knee joint load variables were excellent, ranging from 0.86 - 0.98. Knee flexion/extension moments were most affected by BMI, with lower reliability with the highest tertile of BMI. The reliability of the semi-quantitative scoring of the knee joint using MRI exceeded previously reported results, ranging from a low of 0.66 for synovitis to a high of 0.99 for bone marrow lesion size. Discussion: The IDEA trial has the potential to enhance our understanding of the OA disease process, refine weight loss and exercise recommendations in this prevalent disease, and reduce the burden of disability. Originally published BMC Musculoskeletal Disorders, Vol. 10, No. 93, July 200

    Determinants of Leukocyte Margination in Rectangular Microchannels

    Get PDF
    Microfabrication of polydimethylsiloxane (PDMS) devices has provided a new set of tools for studying fluid dynamics of blood at the scale of real microvessels. However, we are only starting to understand the power and limitations of this technology. To determine the applicability of PDMS microchannels for blood flow analysis, we studied white blood cell (WBC) margination in channels of various geometries and blood compositions. We found that WBCs prefer to marginate downstream of sudden expansions, and that red blood cell (RBC) aggregation facilitates the process. In contrast to tubes, WBC margination was restricted to the sidewalls in our low aspect ratio, pseudo-2D rectangular channels and consequently, margination efficiencies of more than 95% were achieved in a variety of channel geometries. In these pseudo-2D channels blood rheology and cell integrity were preserved over a range of flow rates, with the upper range limited by the shear in the vertical direction. We conclude that, with certain limitations, rectangular PDMS microfluidic channels are useful tools for quantitative studies of blood rheology

    Lineage Plasticity in SCLC Generates Non-Neuroendocrine Cells Primed for Vasculogenic Mimicry

    Get PDF
    Introduction: Vasculogenic mimicry (VM), the process of tumor cell transdifferentiation to endow endothelial-like characteristics supporting de novo vessel formation, is associated with poor prognosis in several tumor types, including SCLC. In genetically engineered mouse models (GEMMs) of SCLC, NOTCH, and MYC co-operate to drive a neuroendocrine (NE) to non-NE phenotypic switch, and co-operation between NE and non-NE cells is required for metastasis. Here, we define the phenotype of VM-competent cells and molecular mechanisms underpinning SCLC VM using circulating tumor cell–derived explant (CDX) models and GEMMs. Methods: We analyzed perfusion within VM vessels and their association with NE and non-NE phenotypes using multiplex immunohistochemistry in CDX, GEMMs, and patient biopsies. We evaluated their three-dimensional structure and defined collagen-integrin interactions. Results: We found that VM vessels are present in 23/25 CDX models, 2 GEMMs, and in 20 patient biopsies of SCLC. Perfused VM vessels support tumor growth and only NOTCH-active non-NE cells are VM-competent in vivo and ex vivo, expressing pseudohypoxia, blood vessel development, and extracellular matrix organization signatures. On Matrigel, VM-primed non-NE cells remodel extracellular matrix into hollow tubules in an integrin β1–dependent process. Conclusions: We identified VM as an exemplar of functional heterogeneity and plasticity in SCLC and these findings take considerable steps toward understanding the molecular events that enable VM. These results support therapeutic co-targeting of both NE and non-NE cells to curtail SCLC progression and to improve the outcomes of patients with SCLC in the future

    Management of peripheral facial nerve palsy

    Get PDF
    Peripheral facial nerve palsy (FNP) may (secondary FNP) or may not have a detectable cause (Bell’s palsy). Three quarters of peripheral FNP are primary and one quarter secondary. The most prevalent causes of secondary FNP are systemic viral infections, trauma, surgery, diabetes, local infections, tumor, immunological disorders, or drugs. The diagnosis of FNP relies upon the presence of typical symptoms and signs, blood chemical investigations, cerebro-spinal-fluid-investigations, X-ray of the scull and mastoid, cerebral MRI, or nerve conduction studies. Bell’s palsy may be diagnosed after exclusion of all secondary causes, but causes of secondary FNP and Bell’s palsy may coexist. Treatment of secondary FNP is based on the therapy of the underlying disorder. Treatment of Bell’s palsy is controversial due to the lack of large, randomized, controlled, prospective studies. There are indications that steroids or antiviral agents are beneficial but also studies, which show no beneficial effect. Additional measures include eye protection, physiotherapy, acupuncture, botulinum toxin, or possibly surgery. Prognosis of Bell’s palsy is fair with complete recovery in about 80% of the cases, 15% experience some kind of permanent nerve damage and 5% remain with severe sequelae

    HIV-1 Vpr Triggers Mitochondrial Destruction by Impairing Mfn2-Mediated ER-Mitochondria Interaction

    Get PDF
    Human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) has been shown to induce host cell death by increasing the permeability of mitochondrial outer membrane (MOM). The mechanism underlying the damage to the mitochondria by Vpr, however, is not clearly illustrated. In this study, Vpr that is introduced, via transient transfection or lentivirus infection, into the human embryonic kidney cell line HEK293, human CD4+ T lymphoblast cell line SupT1, or human primary CD4+ T cells serves as the model system to study the molecular mechanism of Vpr-mediated HIV-1 pathogenesis. The results show that Vpr injures MOM and causes a loss in membrane potential (MMP) by posttranscriptionally reducing the expression of mitofusin 2 (Mfn2) via VprBP-DDB1-CUL4A ubiquitin ligase complex, gradually weakening MOM, and increasing mitochondrial deformation. Vpr also markedly decreases cytoplasmic levels of dynamin-related protein 1 (DRP1) and increases bulging in mitochondria-associated membranes (MAM), the specific regions of endoplasmic reticulum (ER) which form physical contacts with the mitochondria. Overexpression of Mfn2 and DRP1 significantly decreased the loss of MMP and apoptotic cell death caused by Vpr. Furthermore, by employing time-lapse confocal fluorescence microscopy, we identify the transport of Vpr protein from the ER, via MAM to the mitochondria. Taken together, our results suggest that Vpr-mediated cellular damage may occur on an alternative protein transport pathway from the ER, via MAM to the mitochondria, which are modulated by Mfn2 and DRP1

    Role of Synucleins in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common causes of dementia and movement disorders in the elderly. While progressive accumulation of oligomeric amyloid-β protein (Aβ) has been identified as one of the central toxic events in AD leading to synaptic dysfunction, accumulation of α-synuclein (α-syn) resulting in the formation of oligomers has been linked to PD. Most of the studies in AD have been focused on investigating the role of Aβ and Tau; however, recent studies suggest that α-syn might also play a role in the pathogenesis of AD. For example, fragments of α-syn can associate with amyloid plaques and Aβ promotes the aggregation of α-syn in vivo and worsens the deficits in α-syn tg mice. Moreover, α-syn has also been shown to accumulate in limbic regions in AD, Down’s syndrome, and familial AD cases. Aβ and α-syn might directly interact under pathological conditions leading to the formation of toxic oligomers and nanopores that increase intracellular calcium. The interactions between Aβ and α-syn might also result in oxidative stress, lysosomal leakage, and mitochondrial dysfunction. Thus, better understanding the steps involved in the process of Aβ and α-syn aggregation is important in order to develop intervention strategies that might prevent or reverse the accumulation of toxic proteins in AD

    The genetic architecture of aniridia and Gillespie syndrome

    Get PDF

    Conservation of resources theory and research use in health systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Health systems face challenges in using research evidence to improve policy and practice. These challenges are particularly evident in small and poorly resourced health systems, which are often in locations (in Canada and globally) with poorer health status. Although organizational resources have been acknowledged as important in understanding research use resource theories have not been a focus of knowledge translation (KT) research. What resources, broadly defined, are required for KT and how does their presence or absence influence research use?</p> <p>In this paper, we consider conservation of resources (COR) theory as a theoretical basis for understanding the capacity to use research evidence in health systems. Three components of COR theory are examined in the context of KT. First, resources are required for research uptake. Second, threat of resource loss fosters resistance to research use. Third, resources can be optimized, even in resource-challenged environments, to build capacity for KT.</p> <p>Methods</p> <p>A scan of the KT literature examined organizational resources needed for research use. A multiple case study approach examined the three components of COR theory outlined above. The multiple case study consisted of a document review and key informant interviews with research team members, including government decision-makers and health practitioners through a retrospective analysis of four previously conducted applied health research studies in a resource-challenged region.</p> <p>Results</p> <p>The literature scan identified organizational resources that influence research use. The multiple case study supported these findings, contributed to the development of a taxonomy of organizational resources, and revealed how fears concerning resource loss can affect research use. Some resources were found to compensate for other resource deficits. Resource needs differed at various stages in the research use process.</p> <p>Conclusions</p> <p>COR theory contributes to understanding the role of resources in research use, resistance to research use, and potential strategies to enhance research use. Resources (and a lack of them) may account for the observed disparities in research uptake across health systems. This paper offers a theoretical foundation to guide further examination of the COR-KT ideas and necessary supports for research use in resource-challenged environments.</p
    corecore