5 research outputs found

    Triggers of tree mortality under drought

    No full text
    Severe droughts have caused widespread tree mortality across many forest biomes with profound effects on the function of ecosystems and carbon balance. Climate change is expected to intensify regional-scale droughts, focusing attention on the physiological basis of drought-induced tree mortality. Recent work has shown that catastrophic failure of the plant hydraulic system is a principal mechanism involved in extensive crown death and tree mortality during drought, but the multi-dimensional response of trees to desiccation is complex. Here we focus on the current understanding of tree hydraulic performance under drought, the identification of physiological thresholds that precipitate mortality and the mechanisms of recovery after drought. Building on this, we discuss the potential application of hydraulic thresholds to process-based models that predict mortality

    Response and recovery of grapevine to water deficit : from genes to physiology

    No full text
    International audienceGrapevine is a crop of global economic importance which is often cultivated in dry Mediterranean climates. In the context of climatic change, periods of drought could increase and become more intense. Growers will face increasing pressure to increase irrigation efficiently and/or adopt new grapevine varieties with increased drought resistance and water use efficiency. Adapting viticulture to these challenges requires an improved understanding of how grapevines behave under drought to enable sustainable management strategies and develop new varieties and rootstocks. This chapter summarizes our current understanding of the changes in physiology, signaling, metabolism, and gene expression that mediate grapevine’s response and adaptation to drought
    corecore