56 research outputs found

    In vitro morphological studies on antibody-dependent nonimmune lymphocyte-mediated cytotoxicity in chronic active liver disease

    Full text link
    Using an in vitro system of antibody-dependent cellular cytotoxicity (ADCC), the killing effect of chronic liver disease sera on target Chang cells, mediated by effector nonimmune lymphocytes (NLy), was studied. NLy destroyed Chang cells in monolayers pretreated with sera of patients with chronic active liver disease (CALD). Sera from these patients with CALD, after receiving steroid therapy, demonstrated a significant decrease of the cytotoxic action of NLy. The target cells treated with sera of normal subjects or patients with chronic persistent hepatitis were only minimally affected. Morphological observations of the cytotoxic action in a CALD serum-treated group showed intimate contact between NLy and the target cells in the areas of the plaques, where large numbers of the target Chang cells were injured and were closely associated with effector NLy. The Chang cells developed cytoplasmic swelling. The surface became ruffled, and intracytoplasmic organelles displayed vesicular degeneration. Thereafter, cell rupture and fragmentation occurred. The sera in patients with CALD appear to possess a membrane reactive factor, presumably antibody, against the surface membrane of Chang cells. This immunological mode of reaction between the effectors and target cells (ADCC) may be important in the perpetuation and pathogenesis of hepatocyte death in CALD.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44386/1/10620_2005_Article_BF01073183.pd

    Optimization of Immunoglobulin Substitution Therapy by a Stochastic Immune Response Model

    Get PDF
    Background: The immune system is a complex adaptive system of cells and molecules that are interwoven in a highly organized communication network. Primary immune deficiencies are disorders in which essential parts of the immune system are absent or do not function according to plan. X-linked agammaglobulinemia is a B-lymphocyte maturation disorder in which the production of immunoglobulin is prohibited by a genetic defect. Patients have to be put on life-long immunoglobulin substitution therapy in order to prevent recurrent and persistent opportunistic infections. Methodology: We formulate an immune response model in terms of stochastic differential equations and perform a systematic analysis of empirical therapy protocols that differ in the treatment frequency. The model accounts for the immunoglobulin reduction by natural degradation and by antigenic consumption, as well as for the periodic immunoglobulin replenishment that gives rise to an inhomogeneous distribution of immunoglobulin specificities in the shape space. Results are obtained from computer simulations and from analytical calculations within the framework of the Fokker-Planck formalism, which enables us to derive closed expressions for undetermined model parameters such as the infection clearance rate. Conclusions: We find that the critical value of the clearance rate, below which a chronic infection develops, is strongly dependent on the strength of fluctuations in the administered immunoglobulin dose per treatment and is an increasing function of the treatment frequency. The comparative analysis of therapy protocols with regard to the treatment frequency yields quantitative predictions of therapeutic relevance, where the choice of the optimal treatment frequency reveals a conflict of competing interests: In order to diminish immunomodulatory effects and to make good economic sense, therapeutic immunoglobulin levels should be kept close to physiological levels, implying high treatment frequencies. However, clearing infections without additional medication is more reliably achieved by substitution therapies with low treatment frequencies. Our immune response model predicts that the compromise solution of immunoglobulin substitution therapy has a treatment frequency in the range from one infusion per week to one infusion per two weeks

    An early history of T cell-mediated cytotoxicity.

    Get PDF
    After 60 years of intense fundamental research into T cell-mediated cytotoxicity, we have gained a detailed knowledge of the cells involved, specific recognition mechanisms and post-recognition perforin-granzyme-based and FAS-based molecular mechanisms. What could not be anticipated at the outset was how discovery of the mechanisms regulating the activation and function of cytotoxic T cells would lead to new developments in cancer immunotherapy. Given the profound recent interest in therapeutic manipulation of cytotoxic T cell responses, it is an opportune time to look back on the early history of the field. This Timeline describes how the early findings occurred and eventually led to current therapeutic applications
    • …
    corecore