111 research outputs found

    Inadequate timing of prophylactic antibiotics in orthopedic surgery. We can do better

    Get PDF
    Background and purpose There are rising concerns about the frequency of infection after arthroplasty surgery. Prophylactic antibiotics are an important part of the preventive measures. As their effect is related to the timing of administration, it is important to follow how the routines with preoperative prophylactic antibiotics are working

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Effect of additional treatment with EXenatide in patients with an Acute Myocardial Infarction (EXAMI): study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myocardial infarction causes irreversible loss of cardiomyocytes and may lead to loss of ventricular function, morbidity and mortality. Infarct size is a major prognostic factor and reduction of infarct size has therefore been an important objective of strategies to improve outcomes. In experimental studies, glucagon-like peptide 1 and exenatide, a long acting glucagon-like peptide 1 receptor agonist, a novel drug introduced for the treatment of type 2 diabetes, reduced infarct size after myocardial infarction by activating pro-survival pathways and by increasing metabolic efficiency.</p> <p>Methods</p> <p>The EXAMI trial is a multi-center, prospective, randomized, placebo controlled trial, designed to evaluate clinical outcome of exenatide infusion on top of standard treatment, in patients with an acute myocardial infarction, successfully treated with primary percutaneous coronary intervention. A total of 108 patients will be randomized to exenatide (5 ÎŒg bolus in 30 minutes followed by continuous infusion of 20 ÎŒg/24 h for 72 h) or placebo treatment. The primary end point of the study is myocardial infarct size (measured using magnetic resonance imaging with delayed enhancement at 4 months) as a percentage of the area at risk (measured using T2 weighted images at 3-7 days).</p> <p>Discussion</p> <p>If the current study demonstrates cardioprotective effects, exenatide may constitute a novel therapeutic option to reduce infarct size and preserve cardiac function in adjunction to reperfusion therapy in patients with acute myocardial infarction.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01254123">NCT01254123</a></p

    Blood Flow and Glucose Metabolism in Stage IV Breast Cancer: Heterogeneity of Response During Chemotherapy

    Get PDF
    Objective: The purpose of the study was to compare early changes in blood flow (BF) and glucose metabolism (MRglu) in metastatic breast cancer lesions of patients treated with chemotherapy. Methods: Eleven women with stage IV cancer and lesions in breast, lymph nodes, liver, and bone were scanned before treatment and after the first course of chemotherapy. BF, distribution volume of water (Vd), MRglu/BF ratio, MRgluand its corresponding rate constants K1and k3were compared per tumor lesion before and during therapy. Results: At baseline, mean BF and MRgluvaried among different tumor lesions, but mean Vdwas comparable in all lesions. After one course of chemotherapy, mean MRgludecreased in all lesions. Mean BF decreased in breast and node lesions and increased in bone lesions. Vddecreased in breast and nodes, but did not change in bone lesions. The MRglu/BF ratio decreased in breast and bone lesions and increased in node lesions. In patients with multiple tumor lesions BF and MRgluresponse could be very heterogeneous, even within similar types of metastases. BF and MRgluincreased in lesions of patients who experienced early disease progression or showed no response during clinical follow-up. Conclusion: BF and MRgluchanges separately give unique information on different aspects of tumor response to chemotherapy. Changes in BF and MRgluparameters can be remarkably heterogeneous in patients with multiple lesions

    Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change

    Get PDF
    Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr)

    Overexpression of Akt1 Enhances Adipogenesis and Leads to Lipoma Formation in Zebrafish

    Get PDF
    <div><h3>Background</h3><p>Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the <em>Akt1</em> gene.</p> <h3>Methodology/Principal Findings</h3><p><em>Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1</em>)<sup>cy18</sup> displays severely obese phenotypes at the adult stage. In Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3α/ÎČ, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup> caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(<em>krt4:Hsa.myrAkt1</em>)<sup>cy18</sup>, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues.</p> <h3>Conclusion/Significance</h3><p>Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an important role in balancing normal levels of fat tissue in vivo. The obese zebrafish examined in this study could be a new powerful model to screen novel drugs for the treatment of human obesity.</p> </div

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics
    • 

    corecore