6,640 research outputs found

    Time After Time: Notes on Delays In Spiking Neural P Systems

    Full text link
    Spiking Neural P systems, SNP systems for short, are biologically inspired computing devices based on how neurons perform computations. SNP systems use only one type of symbol, the spike, in the computations. Information is encoded in the time differences of spikes or the multiplicity of spikes produced at certain times. SNP systems with delays (associated with rules) and those without delays are two of several Turing complete SNP system variants in literature. In this work we investigate how restricted forms of SNP systems with delays can be simulated by SNP systems without delays. We show the simulations for the following spike routing constructs: sequential, iteration, join, and split.Comment: 11 pages, 9 figures, 4 lemmas, 1 theorem, preprint of Workshop on Computation: Theory and Practice 2012 at DLSU, Manila together with UP Diliman, DLSU, Tokyo Institute of Technology, and Osaka universit

    Validity of the N\'{e}el-Arrhenius model for highly anisotropic Co_xFe_{3-x}O_4 nanoparticles

    Get PDF
    We report a systematic study on the structural and magnetic properties of Co_{x}Fe_{3-x}O_{4} magnetic nanoparticles with sizes between 55 to 2525 nm, prepared by thermal decomposition of Fe(acac)_{3} and Co(acac)_{2}. The large magneto-crystalline anisotropy of the synthesized particles resulted in high blocking temperatures (4242 K \leqq TBT_B 345\leqq 345 K for 55 \leqq d 13\leqq 13 nm ) and large coercive fields (HC1600H_C \approxeq 1600 kA/m for T=5T = 5 K). The smallest particles (=5=5 nm) revealed the existence of a magnetically hard, spin-disordered surface. The thermal dependence of static and dynamic magnetic properties of the whole series of samples could be explained within the N\'{e}el-Arrhenius relaxation framework without the need of ad-hoc corrections, by including the thermal dependence of the magnetocrystalline anisotropy constant K1(T)K_1(T) through the empirical Br\"{u}khatov-Kirensky relation. This approach provided K1(0)K_1(0) values very similar to the bulk material from either static or dynamic magnetic measurements, as well as realistic values for the response times (τ01010\tau_0 \simeq 10^{-10} s). Deviations from the bulk anisotropy values found for the smallest particles could be qualitatively explained based on Zener\'{}s relation between K1(T)K_1(T) and M(T)

    Cell bystander effect induced by radiofrequency electromagnetic fields and magnetic nanoparticles

    Get PDF
    Induced effects by direct exposure to ionizing radiation (IR) are a central issue in many fields like radiation protection, clinic diagnosis and oncological therapies. Direct irradiation at certain doses induce cell death, but similar effects can also occur in cells no directly exposed to IR, a mechanism known as bystander effect. Non-IR (radiofrequency waves) can induce the death of cells loaded with MNPs in a focused oncological therapy known as magnetic hyperthermia. Indirect mechanisms are also able to induce the death of unloaded MNPs cells. Using in vitro cell models, we found that colocalization of the MNPs at the lysosomes and the non-increase of the temperature induces bystander effect under non-IR. Our results provide a landscape in which bystander effects are a more general mechanism, up to now only observed and clinically used in the field of radiotherapy.Comment: 16 pages, 4 figures, submitted to International Journal of Radiation Biolog

    Probing the stability of superheavy dark matter particles with high-energy neutrinos

    Full text link
    Two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive in this paper lower limits on the lifetime of dark matter particles with masses in the range 10 TeV-10^15 TeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. For dark matter particles which produce neutrinos in a two body or a three body decay, we find that the dark matter lifetime must be longer than O(10^26-10^28) s for masses between 10 TeV and the Grand Unification scale. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay.Comment: 17 pages, 6 figures; v2: references added, discussion improved, matches the version published at JCA

    Gas Sorption and Luminescence Properties of a Terbium(III)-Phosphine Oxide Coordination Material with Two-Dimensional Pore Topology

    Get PDF
    The structure, stability, gas sorption properties and luminescence behaviour of a new lanthanide-phosphine oxide coordination material are reported. The polymer PCM-15 is based on Tb(III) and tris(p-carboxylated) triphenylphosphine oxide and has a 5,5-connected net topology. It exhibits an infinite three-dimensional structure that incorporates an open, two-dimensional pore structure. The material is thermally robust and remains crystalline under high vacuum at 150 degrees C. When desolvated, the solid has a CO2 BET surface area of 1187 m(2) g(-1) and shows the highest reported uptake of both O-2 and H-2 at 77 K and 1 bar for a lanthanide-based coordination polymer. Isolated Tb(III) centres in the as-synthesized polymer exhibit moderate photoluminescence. However, upon removal of coordinated OH2 ligands, the luminescence intensity was found to approximately double; this process was reversible. Thus, the Tb(III) centre was used as a probe to detect directly the desolvation and resolvation of the polymer.Welch Foundation F-1738, F-1631National Science Foundation 0741973, CHE-0847763Chemistr

    Protein adsorption onto Fe3O4 nanoparticles with opposite surface charge and its impact on cell uptake

    Full text link
    Nanoparticles (NPs) engineered for biomedical applications are meant to be in contact with protein-rich physiological fluids. These proteins are usually adsorbed onto the NP surface, forming a swaddling layer called protein corona that influences cell internalization. We present a study on protein adsorption onto different magnetic NPs (MNPs) when immersed in cell culture medium, and how these changes affect the cellular uptake. Two colloids with magnetite cores of 25 nm, same hydrodynamic size and opposite surface charge were in situ coated with (a) positive polyethyleneimine (PEI-MNPs) and (b) negative poly(acrylic acid) (PAA-MNPs). After few minutes of incubation in cell culture medium the wrapping of the MNPs by protein adsorption resulted in a 5-fold size increase. After 24 h of incubation large MNP-protein aggregates with hydrodynamic sizes 1500 to 3000 nm (PAA-MNPs and PEI-MNPs respectively) were observed. Each cluster contained an estimated number of magnetic cores between 450 and 1000, indicating the formation of large aggregates with a "plum pudding" structure of MNPs embedded into a protein network of negative surface charge irrespective of the MNP_core charge. We demonstrated that PEI-MNPs are incorporated in much larger amounts than the PAA-MNPs units. Quantitative analysis showed that SH-SY5Y cells can incorporate 100 per cent of the added PEI-MNPs up to about 100 pg per cell, whereas for PAA-MNPs the uptake was less than 50 percent. The final cellular distribution showed also notable differences regarding partial attachment to the cell membrane. These results highlight the need to characterize the final properties of MNPs after protein adsorption in biological media, and demonstrate the impact of these properties on the internalization mechanisms in neural cells.Comment: 32 pages, 10 figure

    Computing with cells: membrane systems - some complexity issues.

    Full text link
    Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism
    corecore