6,784 research outputs found

    Impact of radiative corrections on sterile neutrino scenarios

    Get PDF
    In sterile neutrino scenarios, radiative corrections induce mass splittings proportional to the top Yukawa coupling, in contrast to the three active neutrino case where the induced splittings are proportional to the tau Yukawa coupling. In view of this, we have analyzed the stability of the four-neutrino schemes favored by oscillation experiments, consisting in two pairs of nearly degenerate neutrinos separated by the LSND gap. Requiring compatibility with the measurements of the abundances of primordial elements produced in Big Bang Nucleosynthesis, we find that when the heaviest pair corresponds to the solar neutrinos (mainly an admixture of nu_e - nu_s) the natural mass splitting is 3-5 orders of magnitude larger than the observed one, discrediting the scenario from a theoretical point of view. On the contrary, the scheme where the heaviest pair corresponds to the atmospheric neutrinos (mainly an admixture of nu_mu - nu_tau) is safe from radiative corrections due to the small sterile component of these mass eigenstates.Comment: 14 pages, LaTeX, 2 figures. Discussion enlarged, references added and typos correcte

    Capital Flows, Exchange Rate Regime, and Macroeconomic Performance in Mexico

    Get PDF
    international capital flows, exchange rate regime

    The Interest Rate-Exchange Rate Link in the Mexican Float

    Get PDF
    This paper examines empirically the interest rate-exchange rate link in the context of the Mexican experience with a floating exchange regime. The impulse response function derived from an ECM estimated by GMM reveals a lasting positive effect of a currency depreciation on the peso-dollar interest rate differential. Some of the macroeconomic consequences from this pattern are discussed, together with a possible explanation based on the incorporation of the central bank reaction function into private expectations.interest rate-exchange rate link, floating exchange rate regimes

    Neutrino properties from Yukawa structure

    Get PDF
    We discuss the implications for lepton mixing and CP violation of structure in the lepton mass matrices, for the case that neutrino masses are generated by the see-saw mechanism with an hierarchical structure for the Majorana masses. For a particularly interesting case with enhanced symmetry in which the lepton Dirac mass matrices are related to those in the quark sector, the CHOOZ angle is near the present limit and the CP violating phase relevant to thermal leptogenesis and to Îœ0ÎČÎČ\nu 0 \beta \beta decay is near maximal.Comment: 13 pages, 7 figures. References added and typos corrected. Mistake in the discussion of leptogenesis correcte

    PAMELA's cosmic positron from decaying LSP in SO(10) SUSY GUT

    Full text link
    We propose two viable scenarios explaining the recent observations on cosmic positron excess. In both scenarios, the present relic density in the Universe is assumed to be still supported by thermally produced WIMP or LSP (\chi). One of the scenarios is based on two dark matter (DM) components (\chi,X) scenario, and the other is on SO(10) SUSY GUT. In the two DM components scenario, extremely small amount of non-thermally produced meta-stable DM component [O(10^{-10}) < n_X /n_\chi] explains the cosmic positron excess. In the SO(10) model, extremely small R-parity violation for LSP decay to e^\pm is naturally achieved with a non-zero VEV of the superpartner of one right-handed neutrino (\tilde{\nu}^c) and a global symmetry.Comment: 6 pages, Talks presented in PASCOS, SUSY, and COSMO/CosPA in 201

    Time After Time: Notes on Delays In Spiking Neural P Systems

    Full text link
    Spiking Neural P systems, SNP systems for short, are biologically inspired computing devices based on how neurons perform computations. SNP systems use only one type of symbol, the spike, in the computations. Information is encoded in the time differences of spikes or the multiplicity of spikes produced at certain times. SNP systems with delays (associated with rules) and those without delays are two of several Turing complete SNP system variants in literature. In this work we investigate how restricted forms of SNP systems with delays can be simulated by SNP systems without delays. We show the simulations for the following spike routing constructs: sequential, iteration, join, and split.Comment: 11 pages, 9 figures, 4 lemmas, 1 theorem, preprint of Workshop on Computation: Theory and Practice 2012 at DLSU, Manila together with UP Diliman, DLSU, Tokyo Institute of Technology, and Osaka universit

    Theoretical Constraints on the Vacuum Oscillation Solution to the Solar Neutrino Problem

    Get PDF
    The vacuum oscillation (VO) solution to the solar anomaly requires an extremely small neutrino mass splitting, Delta m^2_{sol}\leq 10^{-10} eV^2. We study under which circumstances this small splitting (whatever its origin) is or is not spoiled by radiative corrections. The results depend dramatically on the type of neutrino spectrum. If m_1^2 \sim m_2^2 \geq m_3^2, radiative corrections always induce too large mass splittings. Moreover, if m_1 and m_2 have equal signs, the solar mixing angle is driven by the renormalization group evolution to very small values, incompatible with the VO scenario (however, the results could be consistent with the small-angle MSW scenario). If m_1 and m_2 have opposite signs, the results are analogous, except for some small (though interesting) windows in which the VO solution may be natural with moderate fine-tuning. Finally, for a hierarchical spectrum of neutrinos, m_1^2 << m_2^2 << m_3^2, radiative corrections are not dangerous, and therefore this scenario is the only plausible one for the VO solution.Comment: 13 pages, LaTeX, 3 ps figures (psfig.sty
    • 

    corecore