13 research outputs found

    The Use of High Performance Liquid Chromatography for the Characterization of the Unfolding and Aggregation of Dairy Proteins

    Get PDF
    peer-reviewedHigh-performance liquid chromatography (HPLC) is routinely used to identify and characterize proteins. HPLC can help to understand protein aggregation processes in dairy products, which are induced by common industrial processing steps such as heat treatment. In this chapter, three complementary chromatographic methods are described, which are based on the principles of size exclusion and reversed-phase chromatography. These methods are used to determine the degree of denaturation and aggregation of proteins, and estimate the molecular weight of these aggregates

    Congenital short bowel syndrome as the presenting symptom in male patients with FLNA mutations

    No full text
    <p>Purpose: Autosomal recessive congenital short bowel syndrome is caused by mutations in CLMP. No mutations were found in the affected males of a family with presumed X-linked congenital short bowel syndrome or in an isolated male patient. Our aim was to identify the disease-causing mutation in these patients.</p><p>Methods: We performed mutation analysis of the second exon of FLNA in the two surviving affected males of the presumed X-linked family and in the isolated patient.</p><p>Results: We identified a novel 2-base-pair deletion in the second exon of FLNA in all these male patients. The deletion is located between two nearby methionines at the N-terminus of filamin A. Previous studies showed that translation of FLNA occurs from both methionines, resulting in two isoforms of the protein. We hypothesized that the longer isoform is no longer translated due to the mutation and that this mutation is therefore not lethal for males in utero.</p><p>Conclusion: Our findings emphasize that congenital short bowel syndrome can be the presenting symptom in male patients with mutations in FLNA. Genet Med 2013:15(4):310-313</p>

    Effects of Toasting Time on Digestive Hydrolysis of Soluble and Insoluble 00-Rapeseed Meal Proteins

    No full text
    Thermal damage to proteins can reduce their nutritional value. The effects of toasting time on the kinetics of hydrolysis, the resulting molecular weight distribution of 00-rapeseed meal (RSM) and the soluble and insoluble protein fractions separated from the RSM were studied. Hydrolysis was performed with pancreatic proteases to represent in vitro protein digestibility. Increasing the toasting time of RSM linearly decreased the rate of protein hydrolysis of RSM and the insoluble protein fractions. The extent of hydrolysis was, on average, 44% higher for the insoluble compared with the soluble protein fraction. In contrast, the rate of protein hydrolysis of the soluble protein fraction was 3–9-fold higher than that of the insoluble protein fraction. The rate of hydrolysis of the insoluble protein fraction linearly decreased by more than 60% when comparing the untoasted to the 120 min toasted RSM. Increasing the toasting time elicited the formation of Maillard reaction products (furosine, N (ε)-carboxymethyl-lysine and N (ε)-carboxyethyl-lysine) and disulfide bonds in the insoluble protein fraction, which is proposed to explain the reduction in the hydrolysis rate of this fraction. Overall, longer toasting times increased the size of the peptides resulting after hydrolysis of the RSM and the insoluble protein fraction. The hydrolysis kinetics of the soluble and insoluble protein fractions and the proportion of soluble:insoluble proteins in the RSM explain the reduction in the rate of protein hydrolysis observed in the RSM with increasing toasting time
    corecore