17 research outputs found

    Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium

    Get PDF
    BACKGROUND Despite established clinical associations among major depression (MD), alcohol dependence (AD), and alcohol consumption (AC), the nature of the causal relationship between them is not completely understood. We leveraged genome-wide data from the Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared genetic mechanisms and causal relationships among MD, AD, and AC. METHODS Linkage disequilibrium score regression and Mendelian randomization (MR) were performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls; AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals; AC-quantity: 307 098 individuals). RESULTS Positive genetic correlation was observed between MD and AD (rgMD−AD = + 0.47, P = 6.6 × 10−10). AC-quantity showed positive genetic correlation with both AD (rgAD−AC quantity = + 0.75, P = 1.8 × 10−14) and MD (rgMD−AC quantity = + 0.14, P = 2.9 × 10−7), while there was negative correlation of AC-frequency with MD (rgMD−AC frequency = −0.17, P = 1.5 × 10−10) and a non-significant result with AD. MR analyses confirmed the presence of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28, P = 1.29 × 10−6). There was no evidence for reverse causation. CONCLUSION This study supports a causal role for genetic liability of MD on AD based on genetic datasets including thousands of individuals. Understanding mechanisms underlying MD-AD comorbidity addresses important public health concerns and has the potential to facilitate prevention and intervention efforts

    Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

    Get PDF
    Background So far, more than 170 loci have been associated with circulating lipid levels through genome-wide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels.Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from similar to 60 000 individuals in the discovery stage and similar to 90 000 samples in the replication stage.Results Our study resulted in the identification of five new associations with circulating lipid levels at four loci. All four loci are within genes that can be linked biologically to lipid metabolism. One of the variants, rs116843064, is a damaging missense variant within the ANGPTL4 gene.Conclusions This study illustrates that GWAS with high-scale imputation may still help us unravel the biological mechanism behind circulating lipid levels

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease ris

    Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome

    Get PDF
    Monogenic disorders result from defects in a single gene. According to Mendel's laws, these disorders are inherited in either a recessive or dominant fashion. Autosomal-recessive disorders require a disease-causing variant on both alleles, and according to our current understanding, their pathogenicities are not influenced by each other. Here we present an autosomal-recessive disorder, nephrotic syndrome type 2 (MIM 600995), in which the pathogenicity of an NPHS2 allele encoding p.Arg229Gln depends on the trans-associated mutation. We show that, contrary to expectations, this allele leads to a disease phenotype only when it is associated specifically with certain 3' NPHS2 mutations because of an altered heterodimerization and mislocalization of the encoded p.Arg229Gln podocin. The disease-associated 3' mutations exert a dominant-negative effect on p.Arg229Gln podocin but behave as recessive alleles when associated with wild-type podocin. Therefore, the transmission rates for couples carrying the disease-associated mutations and p.Arg229Gln may be substantially different from those expected in autosomal-recessive disorders

    Polygenic risk prediction: why and when out-of-sample prediction R2 can exceed SNP-based heritability

    No full text
    In polygenic score (PGS) analysis, the coefficient of determination (R2) is a key statistic to evaluate efficacy. R2 is the proportion of phenotypic variance explained by the PGS, calculated in a cohort that is independent of the genome-wide association study (GWAS) that provided estimates of allelic effect sizes. The SNP-based heritability (hSNP2, the proportion of total phenotypic variances attributable to all common SNPs) is the theoretical upper limit of the out-of-sample prediction R2. However, in real data analyses R2 has been reported to exceed hSNP2, which occurs in parallel with the observation that hSNP2 estimates tend to decline as the number of cohorts being meta-analyzed increases. Here, we quantify why and when these observations are expected. Using theory and simulation, we show that if heterogeneities in cohort-specific hSNP2 exist, or if genetic correlations between cohorts are less than one, hSNP2 estimates can decrease as the number of cohorts being meta-analyzed increases. We derive conditions when the out-of-sample prediction R2 will be greater than hSNP2 and show the validity of our derivations with real data from a binary trait (major depression) and a continuous trait (educational attainment). Our research calls for a better approach to integrating information from multiple cohorts to address issues of between-cohort heterogeneity

    Applying polygenic risk scoring for psychiatric disorders to a large family with bipolar disorder and major depressive disorder

    Get PDF
    Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders
    corecore