1,510 research outputs found
Learning from Semantic Inconsistencies as the Origin of Dynamic Capabilities in MNCs: Evidence from Pharmaceutical MNCs
This paper focuses on origins of dynamic capabilities in multinational corporations (MNCs). Building on literature in the area of organizational memory and organizational learning, we investigate factors that contribute to subsidiaries of MNCs ability to detach themselves from obsolete knowledge and practices. To construct the theoretical framework, 11 extensive interviews with marketing and sales executives from three pharmaceutical MNCs operated in Iran were conducted. We test our hypotheses using statistical quantitative analysis of data related to 459 observations from subsidiaries of 51 pharmaceutical MNCs during years 2005-2009. We examine the quality of corrective actions taken by subsidiaries of pharmaceutical MNCs subsequent to subsidiaries failing to meet expected performance objectives. Our findings confirm a moderating role for internationalization, span, and the composition of human resources on the quality of corrective actions pursued
Hong Kong\u27s democratic movement and the making of China\u27s offshore civil society
Hong Kong\u27s civil society has remained vibrant since the sovereignty handover in 1997, thanks to an active defense by the democratic movement against Beijing\u27s attempts to control civil liberties. Hong Kong is becoming mainland China\u27s offshore civil society, serving as a free platform for information circulation and organizing among mainland activists and intellectuals
LinkCluE: A MATLAB Package for Link-Based Cluster Ensembles
Cluster ensembles have emerged as a powerful meta-learning paradigm that provides improved accuracy and robustness by aggregating several input data clusterings. In particular, link-based similarity methods have recently been introduced with superior performance to the conventional co-association approach. This paper presents a MATLAB package, LinkCluE, that implements the link-based cluster ensemble framework. A variety of functional methods for evaluating clustering results, based on both internal and external criteria, are also provided. Additionally, the underlying algorithms together with the sample uses of the package with interesting real and synthetic datasets are demonstrated herein.
Direct femtosecond pulse compression with miniature-sized Bragg cholesteric liquid crystal
Direct compression of femtosecond optical pulses from a Ti:sapphire laser
oscillator was realized with a cholesteric liquid crystal acting as a nonlinear
1D periodic Bragg grating. With a 6-um thick sample, the pulse duration could
be compressed from 100 to 48 femtoseconds. Coupled-mode equations for forward
and backward waves were employed to simulate the dynamics therein and good
agreement between theory and experiment was obtained.Comment: Optics Letters, in pres
Ultrafast Optical Signal Processing with Bragg Structures
The phase, amplitude, speed, and polarization, in addition to many other
properties of light, can be modulated by photonic Bragg structures. In
conjunction with nonlinearity and quantum effects, a variety of ensuing micro-
or nano-photonic applications can be realized. This paper reviews various
optical phenomena in several exemplary 1D Bragg gratings. Important examples
are resonantly absorbing photonic structures, chirped Bragg grating, and
cholesteric liquid crystals; their unique operation capabilities and key issues
are considered in detail. These Bragg structures are expected to be used in
wide-spread applications involving light field modulations, especially in the
rapidly advancing field of ultrafast optical signal processing.Comment: To be published in a special issue of journal Applied Sciences, on
the topic of Guided-Wave Optic
Satellite-derived ocean thermal structure for the North Atlantic hurricane season
Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Monthly Weather Review 144 (2016): 877-896, doi:10.1175/MWR-D-15-0275.1.This paper describes a new model (method) called Satellite-derived North Atlantic Profiles (SNAP) that seeks to provide a high-resolution, near-real-time ocean thermal field to aid tropical cyclone (TC) forecasting. Using about 139 000 observed temperature profiles, a spatially dependent regression model is developed for the North Atlantic Ocean during hurricane season. A new step introduced in this work is that the daily mixed layer depth is derived from the output of a one-dimensional Price–Weller–Pinkel ocean mixed layer model with time-dependent surface forcing.
The accuracy of SNAP is assessed by comparison to 19 076 independent Argo profiles from the hurricane seasons of 2011 and 2013. The rms differences of the SNAP-estimated isotherm depths are found to be 10–25 m for upper thermocline isotherms (29°–19°C), 35–55 m for middle isotherms (18°–7°C), and 60–100 m for lower isotherms (6°–4°C). The primary error sources include uncertainty of sea surface height anomaly (SSHA), high-frequency fluctuations of isotherm depths, salinity effects, and the barotropic component of SSHA. These account for roughly 29%, 25%, 19%, and 10% of the estimation error, respectively. The rms differences of TC-related ocean parameters, upper-ocean heat content, and averaged temperature of the upper 100 m, are ~10 kJ cm−2 and ~0.8°C, respectively, over the North Atlantic basin. These errors are typical also of the open ocean underlying the majority of TC tracks. Errors are somewhat larger over regions of greatest mesoscale variability (i.e., the Gulf Stream and the Loop Current within the Gulf of Mexico).IFP is supported by Grants NSC 101-2628-M-002-001-MY4 and MOST 103-2111-M-002 -002 -MY3. JFP and SRJ were supported by the U.S. Office of Naval Research under the project “Impact of Typhoons on the North Pacific, ITOP.”2016-06-0
Radiation- and water-use associated with growth and yields of wheat and chickpea in sole and mixed crops
A renewed interest in mixed cropping for its potential to boost yields through increased capture and use of solar radiation and soil-water by the component species. This led to the present study, in which we assessed the performance of wheat and chickpea, grown as sole crops or mixed at half their sole crop populations for their capacity to capture and use solar radiation and soil-water. Trials were conducted in the drought season of 1994 and with or without supplementary irrigation in an average rainfall season of 1995. For the rainfed crops in both years, there was no advantage of mixed crops over wheat grown as a sole crop (wheat-s) either in terms of green area index (GAI), fraction of photosynthetically active radiation intercepted by the canopy (iPAR), dry matter (DM) or grain yield produced. The lack of a yield advantage of mixed cropping was associated with poor canopy development and low yielding capacity of chickpea; it was unable to compensate for its reduced population density in the mixture. Grain yield for chickpea in the mixed crop (chickpea-m) averaged just 29% that of its sole crop (chickpea-s), whereas wheat grown in mixture (wheat-m) produced 72% the yield for wheat-s. Supplementary irrigation from early spring onwards in 1995 increased yield for chickpea-m by 44% over that of chickpea-s, while yield for wheat-m fell to 65% that for wheat-s. Every millimetre of irrigation water increased yield by 10.0, 3.8 and 12.5 kg ha-1 for wheat-s, mixed crop and chickpea-s, respectively. Mixed cropping did not affect the time taken by either wheat or chickpea to attain maximum growth rate, flowering or maturity. The land equivalent ratio (LER) based on grain yields for wheat-chickpea intercropping were 1.01 in 1994, 1.02 without irrigation in 1995, and 1.10 with irrigation in 1995. Neither radiation-use-efficiency nor water-use-efficiency was improved by mixed cropping compared with wheat-s. The poor performance of the mixed crop was ascribed to its poor canopy development early in the season, especially by the chickpea that resulted in low iPAR and transpiration. It is concluded that there was no advantage of growing wheat and chickpea in mixed crops in southern cereal belts of Australia if total biomass or grain yield is the primary purpose. © 2006 Elsevier B.V. All rights reserved
- …
