1,033 research outputs found

    Learning from Semantic Inconsistencies as the Origin of Dynamic Capabilities in MNCs: Evidence from Pharmaceutical MNCs

    Get PDF
    This paper focuses on origins of dynamic capabilities in multinational corporations (MNCs). Building on literature in the area of organizational memory and organizational learning, we investigate factors that contribute to subsidiaries of MNCs ability to detach themselves from obsolete knowledge and practices. To construct the theoretical framework, 11 extensive interviews with marketing and sales executives from three pharmaceutical MNCs operated in Iran were conducted. We test our hypotheses using statistical quantitative analysis of data related to 459 observations from subsidiaries of 51 pharmaceutical MNCs during years 2005-2009. We examine the quality of corrective actions taken by subsidiaries of pharmaceutical MNCs subsequent to subsidiaries failing to meet expected performance objectives. Our findings confirm a moderating role for internationalization, span, and the composition of human resources on the quality of corrective actions pursued

    LinkCluE: A MATLAB Package for Link-Based Cluster Ensembles

    Get PDF
    Cluster ensembles have emerged as a powerful meta-learning paradigm that provides improved accuracy and robustness by aggregating several input data clusterings. In particular, link-based similarity methods have recently been introduced with superior performance to the conventional co-association approach. This paper presents a MATLAB package, LinkCluE, that implements the link-based cluster ensemble framework. A variety of functional methods for evaluating clustering results, based on both internal and external criteria, are also provided. Additionally, the underlying algorithms together with the sample uses of the package with interesting real and synthetic datasets are demonstrated herein.

    Synthesis, characterization and quantum-chemical analysis of {FeNO}7 and {Fe(NO)2}9 compounds and their photo-induced linkage isomers

    Get PDF

    Testing the utility of the consortium for the barcoding of life\u27s two \u27agreed upon\u27 plant DNA barcodes, matK and rbcL

    Get PDF
    DNA barcoding is the use of short standardized regions of DNA to identify unknown specimens to species. Currently, the zoological community has agreed that cytochrome oxidase I subunit 1 (COI), a mitochondrial gene region, will serve as the barcode region for all animal taxa. Due to oftentimes complicated evolutionary histories of plants, the plant barcoding community has had a much harder time agreeing on a gene region or regions that should be used to barcode the various land plant lineages. This is in large part due to poor reproductive barriers, which allows for chloroplast sharing between closely related species. In the summer of 2009, the Consortium for the Barcoding of Life‘s Plant Working Group (CBOL, PWG) announced that portions of two coding chloroplast gene regions (cpDNA), matK and rbcL, would serve as the DNA barcode for all land plants. This recommendation was accompanied by CBOL‘s call for continued testing of these two regions, along with other potential gene regions that may prove to be more effective barcode regions, such as noncoding cpDNA regions like trnH-psbA. Originally, this project was focused on the utility of three noncoding cpDNA regions (trnH-psbA, trnL-trnL-trnF, and trnS-trnG-trnG) at identifying species from the genus Prunus L. Upon the announcement by CBOL, additional sequence data was generated for matK and rbcL using the same Prunus taxa to determine how well these two regions would delimit species compared to the three noncoding cpDNA regions. In addition to this, sequence data for matK and rbcL were generated for 27 angiosperm taxa and compared to 34 previously tested noncoding chloroplast gene regions to determine their relative genetic variability. This broader study enabled me to directly compare the genetic variability of these two coding regions to that of noncoding regions. My results for the broader study demonstrate that matK and rbcL contain less genetic variability than noncoding regions. Based on the number of potentially informative characters (PIC), matK was the 25th most variable region and rbcL was the 34th most variable region out of 36 regions tested. This low level of genetic variability in these two regions may make it difficult to identify closely related species. I recommend further study of the 34 previously tested noncoding cpDNA regions to determine their respective utility as plant DNA barcodes. For the direct species identification tests using Prunus, I found that no region alone or in combination was able to discriminate \u3e 50% of species, and noncoding cpDNA regions typically outperformed the Consortium for the Barcode of Life‘s combination of matK+rbcL

    Ultrafast Optical Signal Processing with Bragg Structures

    Full text link
    The phase, amplitude, speed, and polarization, in addition to many other properties of light, can be modulated by photonic Bragg structures. In conjunction with nonlinearity and quantum effects, a variety of ensuing micro- or nano-photonic applications can be realized. This paper reviews various optical phenomena in several exemplary 1D Bragg gratings. Important examples are resonantly absorbing photonic structures, chirped Bragg grating, and cholesteric liquid crystals; their unique operation capabilities and key issues are considered in detail. These Bragg structures are expected to be used in wide-spread applications involving light field modulations, especially in the rapidly advancing field of ultrafast optical signal processing.Comment: To be published in a special issue of journal Applied Sciences, on the topic of Guided-Wave Optic

    CHANGES OF KINEMATICS IN ROPE SKIPPING AFTER FATIGUE

    Get PDF
    Rope skipping is a popular indoor exercise which enhances cardiorespiratory fitness. A lot of researches investigated the physiological effects of rope skipping. However, biomechanical analysis in this exercise was limited. The purpose of this study was to compare the changes of kinematics of double-leg forward skipping, before and after fatigue. One male subject participated in the study. The subject skipped for 2 minutes and 55 seconds. Results showed that, after fatigue, the subject decreased the jump height, more trunk and head movement in the forward-backward direction, and might recruit more quadriceps and hamstrings muscles during skip
    • …
    corecore