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ABSTRACT

This paper describes a new model (method) called Satellite-derived North Atlantic Profiles (SNAP) that

seeks to provide a high-resolution, near-real-time ocean thermal field to aid tropical cyclone (TC) forecasting.

Using about 139 000 observed temperature profiles, a spatially dependent regression model is developed for

the North Atlantic Ocean during hurricane season. A new step introduced in this work is that the daily mixed

layer depth is derived from the output of a one-dimensional Price–Weller–Pinkel ocean mixed layer model

with time-dependent surface forcing.

The accuracy of SNAP is assessed by comparison to 19 076 independent Argo profiles from the hurricane

seasons of 2011 and 2013. The rms differences of the SNAP-estimated isotherm depths are found to be 10–

25m for upper thermocline isotherms (298–198C), 35–55m for middle isotherms (188–78C), and 60–100m for

lower isotherms (68–48C). The primary error sources include uncertainty of sea surface height anomaly

(SSHA), high-frequency fluctuations of isotherm depths, salinity effects, and the barotropic component of

SSHA. These account for roughly 29%, 25%, 19%, and 10% of the estimation error, respectively. The rms

differences of TC-related ocean parameters, upper-ocean heat content, and averaged temperature of the

upper 100m, are ;10 kJ cm22 and ;0.88C, respectively, over the North Atlantic basin. These errors are

typical also of the open ocean underlying the majority of TC tracks. Errors are somewhat larger over regions

of greatest mesoscale variability (i.e., the Gulf Stream and the Loop Current within the Gulf of Mexico).

1. Introduction

It is increasingly clear that ocean thermal structure

(OTS) is an important factor controlling the intensity of

tropical cyclones (TCs) (e.g., Emanuel 1999; Schade and

Emanuel 1999; Shay et al. 2000; Lin et al. 2005, 2013;

Walker et al. 2005; Wu et al. 2007; Goni et al. 2009;

D’Asaro et al. 2014; Balaguru et al. 2015). The funda-

mental reason is that TCs acquire a significant fraction

of their energy from the ocean via air–sea enthalpy

(sensible 1 latent heat) fluxes, which are very sensitive

to the temperature contrast at the air–sea interface

(Emanuel 1986; Shay et al. 2000; Cione and Uhlhorn

2003; Lin et al. 2005, 2008, 2013; Shay andUhlhorn 2008;

Balaguru et al. 2015; Jaimes et al. 2015; Cione 2015).

Under the effect of strong TC winds, the sea surface

temperature (SST) will decrease as a result of vertical

mixing and upwelling of colder upper-thermocline wa-

ters (Price 1981; Sanford et al. 1987; Shay et al. 1992;

Jacob et al. 2000). This TC-induced SST cooling will

reduce the air–sea temperature contrast and can lead to

significant reduction in the TC’s oceanic energy supply

(Gallacher et al. 1989; Bender et al. 1993; Emanuel 1999;

Schade and Emanuel 1999; Bender and Ginis 2000;

Hong et al. 2000; Cione and Uhlhorn 2003; Emanuel

et al. 2004; Lin et al. 2008, 2013; Cione et al. 2013;

Balaguru et al. 2015). Strong SST cooling may even re-

verse the air–sea temperature contrast (i.e., SST , air

temperature), resulting in a negative heat flux that

transfers energy from the atmosphere to the ocean (Lin

et al. 2013; Walker et al. 2014; Balaguru et al. 2015).

For a given TC, the amplitude of the SST cooling is

closely linked to upper-ocean thermal structure. All else
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being equal, less cooling is expected in regions where the

pre-TC mixed layer is thick and/or the temperature

gradient at the base of the mixed layer is weak (Price

1981). Thus, the TC-induced SST cooling varies re-

gionally with OTS on a wide range of time and space

scales: gyres and boundary currents (Pun et al. 2007; Lin

et al. 2008, 2013; Shay and Uhlhorn 2008; D’Asaro et al.

2014), mesoscale features such as eddies and fronts

(Shay et al. 2000; Lin et al. 2005; Goni et al. 2009; Jaimes

and Shay 2009; Walker et al. 2014), and interannual,

basin-wide phenomena such as El Niño and other long-

term oscillations (Lin et al. 2008, 2014; Pun et al. 2013;

Kosaka 2014). A striking example of the significant de-

pendence of TC–ocean interaction upon OTS was re-

ported by D’Asaro et al. (2014) who observed that

Supertyphoon Megi (2010) induced 78C of SST cooling

in the South China Sea, a region characterized by a very

warm and shallow surface layer, but only about 18C in

the Philippine Sea, where the western North Pacific

warm pool is characterized by a very thick, weakly

stratified surface layer (Ko et al. 2014). To account for

the sometimes very large regional variation of TC-

induced SST cooling, it is essential to have reliable

OTS information available for use in TC forecasting, the

goal of this study.

It has been a significant challenge to provideOTSwith

appropriate spatial resolution and in a timely way. Since

the advent of satellite altimetry (Fu et al. 1994), there

have been ongoing efforts to derive OTS from space-

based observations (Carnes et al. 1990; Goni et al. 1996,

2009; Shay et al. 2000; Fox et al. 2002; Willis et al. 2003;

Ali et al. 2004; Pun et al. 2007, 2014, hereafter PLK14;

Shay and Brewster 2010; Guinehut et al. 2012; Wu et al.

2012; Klemas and Yan 2014; Meyers et al. 2014). Al-

timeters measure sea surface height anomaly (SSHA),

which bears an important relation to OTS, especially

the largest vertical scale of OTS variability. Based

on satellite SSHA and SST measurements, PLK14

developed a regression method that aimed to provide

more vertical resolution of OTS than does the widely

used two-layer model (Goni et al. 1996; Shay et al. 2000;

Pun et al. 2007; Shay and Brewster 2010; Meyers et al.

2014) for the western North Pacific Ocean (WNPO).

The regression method of PLK14 estimates 26 isotherm

depths from the sea surface to about 1000-m depth. The

present study aims to extend PLK14’s regression-based

method with the goal of improved, operational OTS

over the North Atlantic Ocean (NAO) during the hur-

ricane season (i.e., June–November). The domain of the

NAO defined here is 58–508N, 158–1008W (Fig. 1).

PLK14’s method is upgraded with a mixed layer depth

(MLD) that is computed by a one-dimensional Price–

Weller–Pinkel (1D-PWP) ocean mixed layer model

FIG. 1. Spatial distribution of the in situ temperature profiles used in this study. All data are

from the North Atlantic hurricane season from June to November. Blue represents CTD

profiles during 2000–10, red represents XBT profiles during 1993–2010, and black represents

Argo profiles during 2000–10. These data were used to train the regression model. Green dots

represent Argo profiles during 2011–13 used for validation.

TABLE 1. Numbers and periods of in situ temperature profiles used

in regression model development and validation.

Type No. of profiles Period

Regression development

Argo 33 464 2000–10

XBT 61 204 1993–2010

CTD 44 231 2000–10

Validation

Argo 19 076 2011–13
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(Price et al. 1986) forced by realistic wind stress and

radiation fluxes. This new method is called the Satellite-

derived North Atlantic Profiles (SNAP).

2. Data

A total of 157 975 in situ ocean temperature profiles

were used to develop and test the new model (Table 1).

These data were collected from theArgo project (Gould

et al. 2004; Roemmich et al. 2004) and historical ship-

based conductivity–temperature–depth (CTD) and

expendable bathythermograph (XBT) observations

(Fig. 1). Of these profiles, 138 899 (88%) were used to

establish (train) the regression model, while 19 076

(12%) independent profiles were withheld to assess

accuracy.

a. Argo profiling float data

Argo floats repeatedly measure temperature, salinity,

and pressure with high vertical resolution, usually 5–

10m for the upper ocean and 50–100m for the deeper

depths, depending on the float type. The depth range

of Argo measurement is typically from the surface to

2000m. The current Argo array consists of more than

3500 floats, providing ice-free ocean temperature and

salinity profiles with global coverage every 10 days,

roughly.

The Argo profiles used here were downloaded from

the French Research Institute for Exploitation of

the Sea (IFREMER; ftp.ifremer.fr). Some 33 464 Argo

profiles collected from 2000 to 2010 were used for

regression development and 19 076 profiles collected

from 2011 to 2013 were used to assess the accuracy of

SNAP. These Argo profiles have gone through the real-

time quality control test procedures and flagged as

good data by the Argo Data Management Team

(Wong et al. 2012).

b. Ship-based profiles: CTD and XBT

There are only a comparatively few Argo profiles in

the Gulf of Mexico (GOM), the Caribbean Sea, and

coastal waters generally (Fig. 1). To increase the number

of profiles in those areas, ship-based CTD andXBT data

were also used. These data were obtained from the

World Ocean Database 2009 (WOD09) (Boyer et al.

2009), distributed by the National Oceanic and Atmo-

spheric Administration (NOAA)/National Oceano-

graphic Data Center (NODC). All of the profiles

FIG. 2. Long-term-averaged monthly SSHA maps based on the daily maps from 1993 to 2010. These data are courtesy of AVISO.
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archived in WOD09 were quality controlled (Boyer

et al. 2009).

A total of 44 231 CTD profiles were found during the

hurricane seasons during 2000–10. Most of those pro-

files were located in coastal areas of the United States

(Fig. 1). For XBTs, the period was extended back to

1993 when the high accurate altimetry data (e.g., from

TOPEX/Poseidon) became available. There are 61 204

XBT profiles collected during the hurricane seasons

during 1993–2010. It should be noted that XBT con-

tributes most of the profiles available from coastal

waters and in the Caribbean Sea, where Argo and CTD

data are rather sparse.

c. Satellite altimetric SSHA and radiometric SST

The altimetric data used here are the daily merged

and gridded SSHA maps from the Archiving, Valida-

tion, and Interpretation of Satellite Oceanographic

Data (AVISO; www.aviso.altimetry.fr) data center. Sea

surface height anomaly measurements from multiple

altimetry missions [e.g., TOPEX/Poseidon, Jason-1,

Environmental Satellite (Envisat), etc.] are combined

together by the AVISO team (Ducet et al. 2000; Pascual

et al. 2006, 2009) to generate a daily gridded field

with 0.258 spatial resolution. Here the delayed time ‘‘all-

sat-merged’’ product is used, which is expected to provide

the highest quality SSHA map.

There are significant seasonal variations in the SSHA

field, up to 10 cm (Fig. 2). The highest sea level occurs

from September to November, while the lowest is from

March to May. To be consistent with the isotherm depth

anomaly calculated later, the seasonal cycle of SSHA

was removed by subtracting the monthly composite

average computed between 1993 and 2010.

The SST data used here are from the cloud-penetrating

microwave optimally interpolated SST (OISST) analysis

of the Remote Sensing Systems (RSS; www.remss.com).

This product is generated by blending SSTmeasurements

from multiple microwave radiometers, which include the

Tropical Rainfall Measuring Mission (TRMM) Micro-

wave Imager (TMI), the AdvancedMicrowave Sounding

Radiometer for the Earth Observing System (AMSR-E),

AMSR2, and WindSat (Gentemann et al. 2010). The

OISSTdataset has 0.258 spatial resolution and is provided
on a daily basis.

d. GDEM ocean climatology

The U.S. Naval Research Laboratory (NRL)’s

Generalized Digital Environmental Model, version 3

(GDEM), monthly climatology was adopted here as

the reference ocean temperature and salinity structure.

The GDEM climatology has horizontal resolution of

0.258 and temporal resolution of one month. GDEM

was produced with a large number of classified in situ

profiles not otherwise available for this use (Carnes

2009). As pointed out by Meyers et al. (2014), a

monthly climatology taken literally will show a large

jump from one month to the next. For example, the

corresponding climatological depth of 208C isotherm

(D20) maps for June and July shows up to 640-m

FIG. 3. (a) The 2497 profiles (color coded by corresponding SSHA) inside the 108 by 58 box centered on 26.1258N,

67.1258W (star at the middle of the box). (b) As in (a), but color coded by DD20, which is the difference between in

situ (Argo) D20 and climatological (GDEM) D20. (c) DD20 vs SSHA from these 2497 profiles, based upon which

a linear regression of D20 is obtained for the central grid point.
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differences. Since the profiles and the satellite data are

analyzed here on a daily basis, the GDEM monthly

climatology is interpolated to a daily value. By this

procedure, the unphysical jump between monthly means

is eliminated.

It is noteworthy that this new method is not particu-

larly sensitive to the choice of the climatology since

climatology serves merely as a reference in SNAP; the

difference introduced by a specific climatology would be

adjusted by the regression equation.

3. Regression model

a. Training the regressions

The development of the regression model generally

follows the procedure introduced in PLK14 (viz., the

model seeks to estimate isotherm depth anomaly, DDk,

from the observed SSHA, Dh):

DD
k
5 a

(i,j,k)
3Dh

(i,j,t)
1 b

(i,j,k)
. (1)

The index k defines which isotherm, 298, 288, 278, . . . ,
48C. The operator D defines the anomaly of isotherm

depth or sea surface height with respect to a smoothly

varying annual mean (i.e., DDk 5Dk 2Dk) and simi-

larly for Dh. The regression coefficients, a and b, are a

function of location (i, j) and k, respectively; i and j are

longitude and latitude, respectively, with 0.258 incre-

ment; and t is time.

The regression is computed from the profiles within a

box that is nominally 108 longitude by 58 latitude cen-

tered on each 0.258 grid point. Thus, all of the DDk and

Dh pairs located within this box are used to estimate the

linear regression [Eq. (1)] for that central grid point.

An exemplary regression procedure for D20 in the

subtropical NAO at 26.1258N, 67.1258W is shown in

Fig. 3. Within this 108 by 58 box, there were 2479 tem-

perature profiles. In this typical example, there is a sig-

nificant linear relationship between SSHA andD20 with

correlation coefficient, r 5 0.7. This regression shows

that 1 cm of SSHA projects into 2.7-m depth anomaly of

the 208C isotherm, D20. Figure 4 shows the spatially

varying regression coefficients (a and b) for D20 and the

number of profiles available at each grid point. It is ev-

ident that the regional variation of the regression co-

efficients is quite significant.

In the NAOdomain there are two important marginal

seas—the Caribbean Sea and GOM—that have hydro-

graphic conditions markedly different from the open

NAO at the same latitude. The Caribbean Sea OTS

includes a very deep warm water layer all year-round

(Fig. 5a), while the GOM is dominated by the Loop

Current and its eddies (Shay and Uhlhorn 2008; Goni

et al. 2009). To acknowledge this difference in hydro-

graphic conditions the profiles are separated into three

basins, which are the Caribbean Sea, GOM, and open

NAO (Fig. 5b). The 108 by 58 boxes do not overlap one

region to the next. Notice that the profiles available for

evaluating the regression in the southwestern part of the

GOM and the western part of the Caribbean Sea are

especially sparse (Fig. 4c).

b. Correlation between SSHA and subsurface
isotherms

The correlation between SSHA and the vertical dis-

placement of the isotherm depths can be viewed as an

index evaluating the goodness of the regression.

Figure 6b shows the correlation between SSHA and

D20, which is usually used as a proxy for the depth of the

main thermocline (Goni et al. 1996; Shay et al. 2000; Pun

et al. 2007). High correlation, r5 0.6–0.8, is found in the

GOM, Caribbean Sea, and western NAO (i.e., Sargasso

Sea), indicating that the derived regressions have a

FIG. 4. (a) The D20 linear regression coefficient a, (b) coefficient

b, and (c) the number of profiles used to train the regression at each

grid point.
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useful ability to estimate D20 variation from SSHA in

these areas. However, relatively low correlation is found

in the eastern NAO (Fig. 6b) where D20 may be within

themixed layer or even outcrop the sea surface (Fig. 5a).

It is also noted that a significant low correlation patch

stretches from the east of the Caribbean Sea to the

western coast of Africa. Notice that this area is associ-

ated with low SSHA and high salinity variations, where

the standard deviations of SSHA and salinity are only

about 4 cm and .0.2 psu, respectively (Fig. 7). These

two factors likely contribute to the low correlation be-

tween SSHA and the isotherm variation (more on errors

below). In addition, the high eddy activity and salinity

effect may also explain the low correlation between

SSHA and D20 along the Gulf Stream extension area,

where SSHA and salinity variations are remarkable

(Figs. 6b and 7). Similar correlation pattern is found in

D26 (Fig. 6a), which is often used to measure the

thickness of the warm water layer (Lin et al. 2008).

However, the correlation coefficient is somewhat less

than that of D20. This is probably because D26 is usually

closer to the base of the surface mixed layer. Inter-

estingly, relatively low correlation is found through-

out the water column along the Cayman Trench,

indicating that the bottom topography may affect sea

surface height behavior (i.e., more barotropic variability

that is not associated with significant OTS anomaly),

though it could also be related to the low number of

profiles in this area (Fig. 4c).

To see how the correlation varies in the vertical, three

cross sections along 378, 278, and 158N latitudes are

extracted roughly for the Gulf Stream, GOM, and Sar-

gasso Sea–Caribbean Sea, respectively (Fig. 8). In the

Gulf Stream (west of 358W) high correlation (r . 0.6) is

found in the layer betweenD18 andD4, whereas outside

the Gulf Stream (east of 358W) SSHA is better corre-

lated with D14, D13, and D12 (Fig. 8a). In the GOM,

SSHA mainly represents the variations in the isotherms

between D25 and D5 (Fig. 8b). It is interesting that two

maximum correlation peaks appear in the Sargasso Sea:

one between D23 and D18 and the other at deeper

depths between D12 and D5 (Fig. 8b). Strong correla-

tion is also found in the Caribbean Sea betweenD27 and

D8 (Fig. 8c). As aforementioned, low correlation is

found in D20 and D26 at this low-latitude band (;158N)

east of the Caribbean Sea, the correlation for the whole

column of isotherms is in fact less than 0.5. Clearly, there

are significant regional variations of the DDk–Dh cor-

relations, which the method developed here attempts to

take into account.

FIG. 5. (a) GDEM climatological D20 in average June. (b) Three

subbasins: the Caribbean Sea (blue), GOM (green), and open

NAO (yellow).

FIG. 6. Spatial distribution of correlation coefficient r between

SSHA and (a) D26 and (b) D20. The areas marked with diagonals

indicate that the correlation is less than 99% significant based on

Student’s t test. Dashed lines indicate the latitudes of the cross

sections in Fig. 8 at 378, 278, and 158N. The geographic locations of

the Gulf Stream extension, Sargasso Sea, and Cayman Trench are

noted in (b).
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4. Daily mixed layer depth

Auseful estimate of OTSmust include a realistic SST

along with the thickness of the surface layer over which

SST is relevant (Pun et al. 2007; Meyers et al. 2014).

Here the surface layer thickness is identified as the

thickness (or depth) of the surface isothermally mixed

layer. For the sake of simplicity, this depth is hereafter

referred to asMLD and its definition will be introduced

later in this section. The mixed layer depth and its as-

sociated temperature make a very significant contri-

bution to upper-ocean heat content (UOHC; Leipper

and Volgenau 1972; Shay et al. 2000; Goni et al. 2009),

which is commonly used in tropical cyclone research.

The mixed layer depth varies rapidly (hours) with the

surface fluxes (Mellor and Yamada 1982; Price et al.

1986; Kantha and Clayson 1994; Bernie et al. 2005).

Pun et al. (2007) and PLK14 adopted the climatological

monthly MLD from NRL (Kara et al. 2002) to com-

plete their satellite-derived profiles. Recently, Meyers

et al. (2014) attempted to improve MLD by correlating

MLD with SSHA observation, just as described above

for the subsurface temperature. However, there is

only a weak correlation between the variables SSHA

and MLD. In part, this arises because the temporal

variation of MLD is much faster than the altimetry

observing frequency, the former can be in hours and

the latter is usually every several days even when

multiple altimeters are combined together.

1D-PWP estimation

This study aims to improve the estimation of MLD by

employing a simple, one-dimensional (depth and time-

dependent only) ocean mixed layer model developed by

Price et al. (1986). The implicit assumption is that the

short term—days to a week—variation of MLD over

FIG. 7. (a) Standard deviation of SSHA in the North Atlantic

Ocean based on the AVISO daily SSHA maps during 2001–10.

(b) Standard deviation of salinity at 100-m depth during September

based on GDEM salinity analysis.

FIG. 8. SSHA–isotherm correlation cross section along (a) 378,
(b) 278, and (c) 158N. Gray depicts land and white surface layer

indicates no correlation obtained. Diagonals indicate the correla-

tions that are less than 99% significant. The zonal extents of the

Gulf Stream extension, GOM (Gulf of Mexico), Sargasso Sea, and

Caribbean Sea are noted.
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most of the open ocean is driven mainly by the surface

fluxes. The 1D-PWP accepts as input the usual surface

heat and freshwater fluxes (discussed below) and then

distributes the resulting buoyancy over the upper ocean

according to three mixing processes. The first process is a

buoyancy (heat 1 freshwater) flux–induced free con-

vection, the second and third ones are wind-drivenmixed

layer entrainment and vertical shear flow instability.

The initial condition, temperature and salinity pro-

files, is extracted from the daily climatological GDEM

temperature and salinity analyses. The surface forcing

terms input to the 1D-PWP includes shortwave and

longwave radiations, latent and sensible heat fluxes,

precipitation, and surface winds, which are extracted

from the 6-hourly reanalysis fields based onReanalysis 1

dataset of NOAA/National Centers for Environmental

Prediction (NCEP). The wind stress is computed from

the winds via the usual

t
x
5 r

a
C

D
ujUj, and (2)

t
y
5 r

a
C

D
yjUj , (3)

where tx and ty are the x and y components of the wind

stress, respectively; ra is air density taken as 1.2 kgm23;

and jUj is the absolute wind speed and u and y are the

east and north components, respectively, of the wind

velocity. The drag coefficient, CD, is from Powell et al.

(2003), which is suitable under high wind (.25ms21)

conditions.

Examples of the surface wind stress and fluxes are in

Figs. 9a–c. These are for 29.58N, 68.68Wover a period of

80 days beginning on 1 September 2010. The initial

temperature and salinity profiles at that location were

based on 1 September GDEM daily climatology. The

evolution of 1D-PWP-simulated SST can be compared

to that of satellite-basedOISST (Fig. 9d). It is found that

the 1D-PWP performs fairly well insofar as the tendency

of the modeled SST is in good agreement with that of

satellite observation. The sea surface temperature ap-

pears to decline after 1 September 2010, coincident with

the decrease in the incoming (shortwave) radiation and

the increase in outgoing (longwave1 latent and sensible

heat fluxes) radiation (Figs. 9b,c). Note that the 1D-

PWP used in this way does not simulate well SST during

the first 10 days of the integration. This is common, and

this is attributed to the time required for the model to

adjust (or forget) the details of the initial condition.

Therefore 15 days are allowed for the 1D-PWP to adjust

to the surface forcing, and then compute MLD from the

FIG. 9. Examples of the surface wind and flux data from NCEP’s Reanalysis-1 used to drive the 1D-PWP model.

(a)–(c) The time series of wind stress, incoming radiation (i.e., shortwave), and outgoing radiation (i.e., longwave,

latent heat, and sensible heat), respectively, at 29.58N, 68.68W from 1 Sep to 20 Nov 2010 (i.e., 80 days).

(d) Comparison between satellite-basedOISST (black) and 1D-PWP-simulated SST (red). It is typically the case that

the first 5–10 days of an integration show larger errors than do later times.
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simulated temperature profile. The length of 15 days is a

compromise between time efficiency and accuracy based

on results like that of Fig. 9d.

To obtain MLD for the entire NAO, the 1D-PWP is

set to run for every 28 spatial grid for every day. The 28
MLD map is linearly interpolated into 0.258 native to

SNAP. For instance, MLD on 1 September 2012 was

obtained from the 1D-PWP-simulated profile based on

GDEM temperature and salinity profiles on 18 August

as initial conditions and the surface forcing from

18 August to 1 September 2012.

Figure 10 compares the 1D-PWP-derivedMLDmap on

1 September 2012 and the climatological SeptemberMLD

map from NRL. The MLD was calculated from the 1D-

PWP-derived profile based on a threshold of 0.38C dif-

ference from the temperature at 10-m depth (Kara et al.

2003). Choosing the temperature at 10m as a reference

was an attempt to avoid the largest amplitude of the di-

urnal fluctuations that occurs in the modeled profile. It is

evident that the MLD patterns are rather different: in the

1D-PWP-derived map, the thickest MLD (60–80m) is lo-

cated in the Caribbean Sea, while in the climatology the

thickest MLD is located in the central NAO.

Given an estimate of MLD and satellite-derived SST,

together with up to 26 isotherm depths (i.e., D29–D4)

derived from SSHA based on the regression model de-

veloped in section 3, the end result is a temperature

profile (OTS) that can be obtained at 0.258 spatial

resolution on a daily basis (Fig. 11). A validation of this

SNAP-derived OTS is described in the next section.

5. Validation

All of the Argo temperature profiles collected from

2011 to 2013 during the hurricane season (from June

to November, 19 076 in total) were withheld from the

training stage and are here used to assess the accuracy of

SNAP (Fig. 1 and Table 1). Validations will be per-

formed for the isotherm depths, D20,D26, the 1D-PWP-

derived daily MLD and two hurricane-related ocean

parameters: UOHC and vertically averaged tempera-

ture of upper 100m, T100 (Price 2009).

a. Regression-derived isotherm depths

Isotherm depths, which are derived from SSHA via the

regression model, are the essential components making

up SNAP (Fig. 11). In particular, D20 and D26 have long

been used to characterize the depth of the main ther-

mocline and the thickness of surface warm water layer

(e.g., Goni et al. 1996; Shay et al. 2000; Lin et al. 2005,

2008, 2009). It is noteworthy that the profiles available for

D20 validation is about 1.5-fold the profiles used for D26

validation because many of the profiles located in the

northern NAO have SST , 268C and hence do not con-

tainD26. Comparing to theArgo observations, it is found

that the regression model is able to derive reliable D20

and D26 from altimetry SSHA for the NAO overall with

FIG. 10. Comparison between (a) 1D-PWP-derived MLD on 1 Sep

2012 and (b) NRL’s September climatology of MLD.

FIG. 11. Schematic of SNAP, which comprises satellite-derived

SST, 1D-PWP-derived daily MLD, and up to 26 isotherm depths

from altimetry SSHA based on the regression model.
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FIG. 12. Scatterplots of SNAP estimations against Argo observations over the entire NAO domain (Fig. 1) for the

test period: (a) D20, (b) D26, (c) UOHC, and (d) T100. In (c) and (d) scatterplots that compare the results from the

use of climatological MLD (red) and nominal SNAP, using 1D-PWP-derived MLD (green) are also shown. Sample

number, RMSD, correlation, and bias with respect to Argo are shown in each scatterplot. (e),(f) RMSDs and biases

for averaged temperatures (T30–T150) using different averaging lengths ranging from 30 to 150m.
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r 5 0.92 and 0.83, respectively (Figs. 12a,b). The root-

mean-squared (rms) differences (RMSDs) of D20 and

D26 with respect to the Argo observations are 22 and

12m, respectively, and no significant biases are found.

Figure 13 shows RMSD and the error percentage for

all regression (SSHA)-derived isotherm depths from

D29 to D4. The rms difference increases with isotherm

depths; RMSD is about 10–25m for upper isotherms

(D29–D19), 35–55m for the middle isotherms (D18–

D7), and increases from 60 to 100m at the lower iso-

therms (D6–D4). The error percentage is RMSD nor-

malized with the rms of observed depth. The error is

generally within 30% for all isotherms. The error sour-

ces for SNAP-derived isotherm depth estimations will

be discussed in a later section 6b.

b. 1D-PWP-derived MLD

The collocated and coincident 1D-PWP-derived MLD

is extracted for eachArgo profile for the comparison. The

mixed layer depth of the Argo profiles (hereafter Argo_

MLD) is calculated with the temperature criterion in-

troduced in section 4. In addition to comparing with

the Argo_MLD, the NRL’s climatology monthly MLD

(hereafter NRL_MLD) is also used for a reference. The

definition of NRL_MLD is based on density criterion

that takes the salinity into account, but still depends

mainly upon temperature change (Kara et al. 2002).

The intercomparisons between 1D-PWP-derived

MLD, NRL_MLD, and Argo_MLD during the NAO’s

hurricane season are shown in Fig. 14. Although the 1D-

PWP-derived MLD versus Argo_MLD is quite scat-

tered, the tendency agrees with Argo observations and

in general, 1D-PWP-derived MLD outperforms the

climatological NRL_MLD for all months from June to

November. Interestingly, it is found that theNRL_MLD

seems to have a cap value. For example, NRL_MLD

saturates at ;50 and ;60m in September and October,

respectively. In contrast, the 1D-PWP roughly estimates

the early fall increase in MLD, especially in October.

The monthly statistics are summarized in Table 2. On

average, RMSD between 1D-PWP-derived MLD and

Argo_MLD is ;13m, with the lowest error (;9m) in

August and the highest error (;18m) in November. The

rms difference for NRL_MLD is ;15m, also with the

lowest (;11m) in August and the highest (;21m) in

November. The overall improvement of 1D-PWP-

derived MLD over NRL_MLD is 14%–24% depending

upon month, showing that the present use of the 1D-

PWP has some efficacy, at least compared with the use

of a climatology.

c. Vertically integrated parameters: UOHC and T100

UOHC defines the heat content that exceeds 268C:

UOHC
(x,y)

5 c
p
r �

D26

z50

DT
(x,y,z)

DZ, (4)

where cp is the heat capacity of the seawater at the

constant pressure, 4178 J kg21 8C21; r is the density of

seawater, 1026 kgm23; andDT is the difference between

T(z) and 268C over the depth interval DZ (Leipper and

Volgenau 1972). UOHC is widely used to characterize

the upper-ocean energy available for TC’s in-

tensification (Shay et al. 2000; Goni et al. 2009; Mainelli

et al. 2008; Lin et al. 2009). Recently, Price (2009) pro-

posed that a vertical average of ocean temperature may

have better properties than does the integral [Eq. (4)]

especially in shallow or cold waters (Lin et al. 2013, 2014;

D’Asaro et al. 2014; Balaguru et al. 2015). The appro-

priate depth of the averaging (i.e., the depth to which

vertical mixing reaches) depends significantly upon

ocean stratification and upon TC intensity and trans-

lation speed (Price 2009; Lin et al. 2013; Balaguru et al.

2015). The aim here is to characterize ocean-only

properties, and hence this validation will focus on

T100 (i.e., averaging length 5 100m). Both UOHC and

T100 can be readily calculated from Argo and SNAP-

derived profiles. The long-term goal is to nowcast these

parameters with an accuracy of 5 kJ cm22 for UOHC

and 0.58C for T100, not quite reached by the pres-

ent model. These values were judged to be significant

to TC–ocean interaction, and within the bounds of

FIG. 13. (a) NAO-wide rms difference and (b) error percentage

of regression-derived isotherm depths from D29 to D4. The error

percentage is RMSD normalized with the rms of observed depth.
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observational and analytic errors (Cione et al. 2000;

Cione and Uhlhorn 2003; Mainelli et al. 2008).

Figures 12c and 12d show the comparisons between

the Argo observations and estimates from SNAP. It is

evident that SNAP-derived UOHC and T100 are highly

correlated with the corresponding Argo observations

with r. 0.9. The rms differences of derived UOHC and

T100 are ;10 kJ cm22 and ;0.88C, respectively, and no

obvious biases are found.

The error for the depth-averaged temperatures with

different averaging lengths from 30 to 150m was also

evaluated (Figs. 12e,f). It is found that RMSD and bias

reduce significantly as the averaging length shoals. From

T100 to T30, RMSD decreases from 0.88 to 0.58C, likely
the shorter averaging lengths are often within the sur-

face layer, where (observed) SST dominates. In addi-

tion, there are gradual decreases in RMSD and bias

from T110 to T150, probably due to the benefit from the

regression-derived isotherm depths.

It is noteworthy that the use of 1D-PWP-derived

MLD in SNAP reduces the overall RMSD of UOHC

by ;11%, compared with using climatological MLD;

it provides only very limited improvement in T100,

;2%, while ;7% in T30 (Fig. 12e). Evidently the

subsurface structure plays a bigger role in T100 than

in UOHC.

d. Regional and TC-relevant performances

Given that the main purpose of SNAP is to aid

hurricane forecasting, it is of interest to examine the

regional performance of SNAP-derived quantities, es-

pecially in areas that are sensitive to hurricanes. Using

the moving box (108 longitude by 58 latitude) technique

FIG. 14. Monthly MLD comparisons between 1D-PWP-derived MLD (green), NRL_MLD (red), and Argo_MLD from June to

November of 2011 and 2013. Note that the scales in October and November plots are different from others.

TABLE 2. Monthly RMSDs of 1D-PWP-derived MLD and

NRL_MLD with respect to Argo_MLD. The differences and im-

proved percentages both are relative to NRL_MLD’s RMSD.

Month

RMSD

of

PWP’s

MLD

(m)

RMSD

of

NRL’s

MLD

(m)

Difference

(m)

Improved

(%)

Sample

size

Jun 13.8 16.1 22.3 14.6 2312

Jul 10.8 12.9 22.1 16.3 2374

Aug 9.4 11.1 21.7 15.6 2430

Sep 11.2 14.1 22.9 20.3 2663

Oct 12.5 16.4 23.9 23.7 2844

Nov 18.1 20.9 22.8 13.5 2616
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introduced in section 3a, regional validations for OTS

parameters are conducted with the Argo profiles from

2011 to 2013 (Fig. 15).

The RMSDs are somewhat higher over the regions of

the Loop Current (GOM) and the Gulf Stream com-

pared to the overall performance (Fig. 15). Specifically,

the SNAP-derived D20 has an RMSD 5 25–30m in the

LoopCurrent and 30–40m in theGulf Stream (Fig. 15a).

These are 20%–40% and 40%–90% higher than the

RMSD for the NAO overall, 21.5m. The errors are

larger in these regions due to the high mesoscale vari-

ability over the GOM and over the Gulf Stream

(Fig. 7a). Similar spatial patterns are found in the error

estimates of D26 and UOHC (Figs. 15b,c). SNAP-

derived T100 also exhibits greater uncertainties in

these two regions (1.258C and nearly 28C in the Loop

Current and in the Gulf Stream, respectively) and over

the southeastern NAO (Fig. 15d). For 1D-PWP-derived

MLD, relatively larger uncertainties (.20m) appear in

the Gulf Stream, the Caribbean Sea, and the southern

NAO (Fig. 15e).

Still another and more relevant way to assess the per-

formance of SNAP is to sample along actual TC tracks

(Fig. 16). A subset of Argo profiles representing TC

conditionwas extracted from the validation dataset based

on the 6-hourly best track data during 2011–13 from the

National Hurricane Center. Profiles within63 days and a

radius of 28 latitude at each TC location were selected

(Fig. 16a). This sampling indicates that the performance

of SNAP under TC condition is as good as the perfor-

mance for the NAO overall (Fig. 12 vs Figs. 16b–e).

e. Comparisons with a long-term Argo float

To further illustrate the performance of SNAP, a

comparison is made between SNAP data and the tem-

perature measurements from a long-lived Argo float

4901224, which reported the temperature profile every

10 days (Fig. 17). This float was deployed at 23.58N,

718W on 18 December 2010 and remained within the

southern part of the North Atlantic Subtropical Gyre.

The comparison period is from 27 December 2010 to

25 May 2013 covering two hurricane seasons: 2011 and

FIG. 15. Regional validations for SNAP-derived (a) D20,

(b) D26, (c) UOHC, (d) T100, and (e) MLD. Argo profiles during

2011–13 are used for this test. For each grid point, profiles within

the 108 by 58 box are selected to assess the performance of SNAP

for that grid point. Note that there is considerable regional vari-

ation of the estimated error in all of the parameters (discussed in

the main text), with the largest errors found in the shelf waters off

the U.S. East Coast.
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2012. It is evident that SNAP-derived data are in gen-

erally good agreement with these Argo observations

(Figs. 17a,b). The RMSD of four ocean parameters:

D26, D20, UOHC, and T100 are 9m, 23m, 10.4 kJ cm22,

and 0.48C, respectively, (Figs. 17d–g), which are just

slightly better (viz. in D26 and T100) than the perfor-

mance for the NAO overall (cf. Fig. 12).

f. Comparison with an operational two-layer model

Today, most of the operational ocean parameters used

for hurricane prediction are based on a two-layer model

(Goni and Trinanes 2003; Mainelli et al. 2008; Shay and

Brewster 2010; Meyers et al. 2014). It is interesting to

compare the results derived from the two-layer model to

see whether the new regression model provides better

estimations. The accuracy of the NOAA’s operational

two-layermodel over theNAObased on Shay et al. (2012)

is shown in Table 3. It should be noted that the sample size

for their validation is different from the one used in the

present study,;50000 versus;19000 in the present study.

The overall improvementmade by SNAP in theRMSDof

UOHC is about 30%. It is noteworthy that the RMSD of

MLD is reduced by ;27% as compared to the previous

approach, which estimates MLD from climatology and

SSHA (just the way SNAP estimates isotherm depths;

Shay et al. 2012; Meyers et al. 2014).

6. Discussion and conclusions

a. Relative contribution of SSHA, SST, and
1D-PWP-derived MLD

According to the algorithm shown in Fig. 11, SNAP

consists of two main parts: 1) the surface mixed layer

structure and 2) subsurface isotherm depths. The ver-

tically integrated or averaged parameters, UOHC and

T100, depend upon the entire upper-ocean profile, and

so have contribution from both mixed layer structure

based on SST and 1D-PWP-derived MLD and iso-

therm depths based on SSHA. It is interesting to ex-

amine the relative contribution of these components

(i.e., SSHA, SST, and 1D-PWP-derived MLD) to

UOHC and T100.

FIG. 16. (a) Argo profiles (red) within 63 days and a radius of 28 latitude at each 6-hourly TC location during 2011–13. The hurricane

tracks in (a) are obtained from the National Hurricane Center. SNAP-derived (b) D20, (c) D26, (d) UOHC, and (e) T100 are compared

with the Argo observations in (a) to assess the performance of SNAP under TC condition. These results are similar to the NAO overall

performance (Fig. 12).
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To separate the contribution to SNAP from SST and

SSHA, a reduced version of SNAP (hereafter SNAP_

nosst) was generated using no MLD information what-

soever. As a reference, still another version was made

usingGDEMonly (i.e., no SSHA information). This will

be dubbed GDEM.

First UOHC is examined: SNAP and SNAP_

nosst reduce the error by 13.5 kJ cm22 (;58%) and

3.3 kJ cm22 (;14%) respectively, compared to GDEM

(Fig. 18). This indicates that there is only about a 24%

(i.e., 3.3/13.5 kJ cm22) improvement contributed by

SSHA, while a larger fraction, 76%, is due to SST and

1D-PWP-derived MLD. The relatively small effect of

SSHA on UOHC is understandable, because the in-

tegration depth (down to D26) is generally closer to the

surface, so that themixed layer properties are of greatest

importance. As for T100, SNAP reduces RMSD by

0.48C (;33%) as compared to GDEM, whereas SNAP_

nosst reduces RMSD by 0.28C (;17%) (Fig. 18). Thus,

SSHA contributes 50% (0.28/0.48C) toward improving

the accuracy of T100, and the remainder comes from

SST and 1D-PWP-dierved MLD. Of course, T100 takes

FIG. 17. Long-term comparison of SNAP estimated OTS with the Argo float 4901224. (a) Time series of temperature structure from

surface to 1000m observed by the float 4901224 from 27Dec 2010 to 25May 2013. (b) The corresponding time series from SNAP, and just

the hurricane seasons. (c) The trajectory of the float 4901224. (d)–(g) Comparisons for D26, D20, T100, and UOHC. Black (blue) curve

represents data from the float 4901224 (SNAP). In this comparison, RMSDs for D26, D20, T100, and UOHC are 9m, 23m, 0.48C, and
10.4 kJ cm22, respectively, which are roughly the same as RMSD for the NAO overall (cf. Fig. 12).

TABLE 3. Overall RMSDs (biases) of D20, D26, MLD, and UOHC from the two-layer model based on Shay et al. (2012) and from

SNAP. Note that the sample sizes between Shay et al. (2012) and the present study are different; the former has;50 000 profiles and the

latter has 19 076 profiles.

D20 (m) D26 (m) MLD (m) UOHC (kJ cm22)

Two-layer model 31.0 (20.5) 18.2 (28.4) 17.2 (23.6) 15.0 (23.0)

SNAP 21.5 (2.9) 12.0 (2.4) 12.6 (23.7) 9.7 (1.9)
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the upper 100m into account, which often exceeds the

base of the mixed layer and hence the SSHA-derived

isotherm depths play a critical role providing the in-

formation from greater depths.

b. Error budget for SNAP estimations

The goal of this study is to provide a near-real-time,

high spatial resolution OTS field that would aid hurri-

cane forecasting. It is noted that the goal for hurricane

forecasting was an accuracy of 5 kJ cm22 rms for UOHC

and 0.58C for T100. The accuracy of SNAP at its present

stage is 10 kJ cm22 and 0.88C (Figs. 12c,d), and so there is

clearly room for and a need for improvement. SNAP can

be improved further bymore in situ temperature profiles

for the regressions, by better SST and MLD products,

and by higher spatial resolution SSHA observations.

Of course, not even perfect SSHAwould yield perfect

estimations ofOTS. Randomnoise associated with high-

frequency fluctuations (e.g., tides or internal waves) of

isotherm depth will always exist. Here this study at-

tempts to determine the error budget from four possible

sources: high-frequency fluctuations, intrinsic altimetric

uncertainty (i.e., instrumental and mapping errors),

barotropic (i.e., mass redistribution) components, and

salinity effects. To assess the high-frequency fluctuation

in the isotherm depths, this study makes use of the ob-

servation from a new profiling float, the Air-Launched

Autonomous Micro Observer (ALAMO; http://alamo.

whoi.edu/), which was specifically designed for hurricane

research and which measures a temperature profile every

6h. During August 2014–November 2015 in the North

Atlantic around 16.58N, 598W, it is found that the high-

frequency fluctuation is 4–6m rms, for isotherms between

D26 and D17 (blue line in Fig. 19a). This variation ac-

counts for 16%–34% of the error of SNAP-derived iso-

thermdepth estimates, which of course donot account for

high-frequency variability in subsurface OTS.

The typical uncertainty in AVISO SSHA maps is

;3 cm. This will introduce a 3–10-m rms error in SNAP-

derived isotherm depths D26-D17 (red line in Fig. 19a),

accounting for 24%–33% of the total error.

To assess the barotropic and salinity contributions to

error, this study takes advantage of the temperature

FIG. 18. Rms differences of T100 and UOHC with respect to

Argo that follow from using GDEM climatology only (blue), from

SNAP_nosst (no specific treatment of the surface layer, green), and

from the full SNAP (red). As always, theArgo profiles used for this

test are from June to November of 2011–13. Notice that the full

SNAP result is significantly improved. The respective values are

shown on the top of the bars.

FIG. 19. (a) Individual uncertainties in SNAP-derived isotherm depth estimations fromD26 to D17. They include altimetry error (red),

high-frequency fluctuation (blue), salinity effect (magenta), and barotropic (or mass) component (green). For the barotropic assessment,

two approaches are examined, which are based on Baker-Yeboah et al. (2009) (solid green) and the Argo float 4901224 (dashed green).

(b) The rms errors of SNAP-derived isotherm depths (black) and the sum of the individual errors in (a). Solid green represents the sum

with barotropic estimation from Baker-Yeboah et al. (2009) and dashed green represents the sum with barotropic estimation from the

Argo float 4901224.
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and salinity profile data from the Argo float 4901224

(Fig. 17). First, the steric height referred to 1000-m

depth is calculated from each temperature and salinity

profile pair from 27 December 2010 to 25 May 2013,

and the mean over the entire period is then removed to

obtain the anomaly field (Fig. 20). A similar set of steric

height anomaly series but with GDEM climatological

salinity profile is generated to assess the salinity effect

in the steric height. Second, the corresponding SSHA

values are extracted from the SSHA maps and the pe-

riod mean is also removed to be consistent with the

steric height series.

From Fig. 20, it can be found that the variations of

steric height anomaly are fairly consistent with that of

SSHA, implying that the steric (baroclinic) component

dominates the sea surface height signal. The rms dif-

ference between the steric height anomaly and SSHA is

4.3 cm, which is in good agreement with Gilson et al.

(1998), who reported that RMSD is about 5.2 cm in the

North Pacific Ocean based on 20 XBT historical tran-

sects. This difference between steric height anomaly and

SSHA can likely be attributed to altimetry uncertainty,

the barotropic component and the deep (below 1000m)

steric variation. If assuming that the deep steric varia-

tion is negligible, then the barotropic part accounts for

about 1.3-cmRMSD (i.e., 4.3–3 cm), which would yield a

1–3-m uncertainty in SNAP-derived isotherm depth

estimations, equivalent to 8%–12% of the overall error.

Alternately, Baker-Yeboah et al. (2009) reported that

the barotropic component can be up to 25% of the

SSHA signal in the eastern South Atlantic Ocean. With

this assumption (25% of SSHA is due to barotropic

motions), the resulting rms error in SNAP-derived iso-

therm depths is roughly consistent with the result found

from the Argo float data, except for D17 andD18 (green

lines in Fig. 19a).

To estimate the salinity contribution, the steric

height anomalies obtained from observed profiles and

the ones substituted with GDEM climatological salin-

ity profiles are compared. It is found that salinity

contributes a 2.5-cm rms in steric height calculation,

which is also consistent with the value found in the

North Pacific Ocean (Gilson et al. 1998). This will lead

to a 2–6-m rms error in SNAP-derived isotherm depth

estimations (magenta line in Fig. 19a), accounting for

15%–21% of the overall error of SNAP-derived

isotherm depths.

According to this error assessment, it is found that the

largest error comes from altimetry uncertainty, then

follows high-frequency fluctuations, then the salinity

FIG. 20. Time series from 27 Dec 2010 to 25 May 2013 for steric height anomaly based on in

situ temperature and salinity profile data from the Argo float 4901224 (red), steric height

anomaly based on the Argo in situ temperature but GDEM climatological salinity (blue), and

corresponding SSHA (black). The steric height is relative to 1000-m depth. The respective

mean over the whole period is removed from steric height and SSHA. Note that the steric

(baroclinic) component dominates the sea surface height signal.
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effect, and finally, the barotropic contribution to SSHA.

These four factors explain most of the uncertainty in

SNAP-derived isotherm depths (Fig. 19b). It should be

noted, however, that the present assessment is relatively

rough with a very limited dataset (one ALAMO float

and one Argo float), and the likelihood is that the

contribution of each component will have regional

dependence.

c. SNAP website

Under a joint effort between National Taiwan Uni-

versity and Woods Hole Oceanographic Institution a

web page (http://www.whoi.edu/science/PO/people/ipun/)

has been established to distribute operational SNAP-

derived temperature profiles along with fields of UOHC

and T100. The data products on this website encompass

both the NAO region described here, and the WNPO

(PLK14). The operational SNAP product is nominally

delivered in near–real time depending on SST and SSHA

data streams.

d. Summary and conclusions

Upper-ocean thermal structure plays a critical role in

controlling TC intensity, especially for the strongest

storms and those that move slowly (Lin et al. 2014;

Balaguru et al. 2015). It has been a significant challenge,

even with today’s ocean observing systems, to opera-

tionally monitor the subsurface temperature with a

basin-wide coverage (Goni et al. 2009). Pioneering ef-

forts by Goni et al. (1996) and Shay et al. (2000) made

use of a two-layer model to derive synthetic ocean

temperature profiles based on satellite-derived SSHA.

This study follows PLK14’s framework for estimating

subsurfaceOTS, and adds on daily climatology and daily

1D-PWP-derived MLD (Table 4), to derive improved

surface layer properties. The SNAP-derivedUOHCand

T100 are of useful accuracy with RMSDs of;10kJ cm22

and ;0.88C, respectively, though they have regional

dependence and clearly there is room for improvement.

One of the most important improvements in SNAP is

making use of daily MLD estimated from the 1D-PWP.

It is found that RMSD of 1D-PWP-derived MLD is

;13m, which is equivalent to;19% improvement with

respect to NRL’s climatological monthly MLD used in

PLK14. There is roughly a ;30% overall improvement

by SNAP as compared to the now widely used two-

layer-derived parameters.

Although the immediate objective here was for hur-

ricane forecasting applications, SNAP can also be ap-

plied to other issues related to the ocean subsurface

thermal structure, such as the initialization of ocean

models and long-term subsurface temperature change

(Huang et al. 2015; Lin and Chan 2015). Based on sat-

ellite observation, Pun et al. (2013) reported that the

ocean subsurface of the WNPO’s typhoon main devel-

opment region has warmed significantly in the past two

decades. It is of great interest to examine whether a

NAO counterpart may also be present.
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