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Abstract

Cluster ensembles have emerged as a powerful meta-learning paradigm that provides
improved accuracy and robustness by aggregating several input data clusterings. In par-
ticular, link-based similarity methods have recently been introduced with superior per-
formance to the conventional co-association approach. This paper presents a MATLAB
package, LinkCluE, that implements the link-based cluster ensemble framework. A variety
of functional methods for evaluating clustering results, based on both internal and exter-
nal criteria, are also provided. Additionally, the underlying algorithms together with the
sample uses of the package with interesting real and synthetic datasets are demonstrated
herein.
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1. Introduction

Data clustering is a common task, which plays a crucial role in various application domains
such as machine learning, data mining, information retrieval, pattern recognition and bioin-
formatics. Principally, clustering aims to categorize data into groups or clusters such that
data in the same cluster are more similar to each other than to those in different clusters,
with the underlying structure of real-world datasets containing a bewildering combination of
shape, size and density. Although, a large number of clustering algorithms have been devel-
oped for several application areas (Jain et al. 1999), the “no free lunch” theorem (Wolpert
and Macready 1995) suggests there is no single clustering algorithm that performs best for
all datasets (Kuncheva and Hadjitodorov 2004), i.e., unable to discover all types of cluster
shapes and structures presented in data (Duda et al. 2000; Fred and Jain 2005; Xue et al.
2009). Each algorithm has its own strengths and weaknesses. For any given dataset, it is usual
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for different algorithms to provide distinct solutions. Indeed, apparent structural differences
may occur within the same algorithm, given different parameters. As a result, it is extremely
difficult for users to decide a priori which algorithm would be the the most appropriate for a
given set of data.

Recently, the cluster ensemble approach has emerged as an effective solution that is able
to overcome these problems. Cluster ensemble methods combine multiple clusterings of the
same dataset to yield a single overall clustering. It has been found that such a practice can
improve robustness, as well as the quality of clustering results. Thus, the main objective of
cluster ensembles is to combine different decisions of various clustering algorithms in such
a way to achieve the accuracy superior to those of individual clustering. Examples of well-
known ensemble methods are: (i) the feature-based approach that transforms the problem
of cluster ensembles to clustering categorical data, i.e., cluster labels (Boulis and Ostendorf
2004; Cristofor and Simovici 2002; Nguyen and Caruana 2007; Topchy et al. 2004, 2005),
(ii) graph-based algorithms that employ a graph partitioning methodology (Domeniconi and
Al-Razgan 2009; Fern and Brodley 2004; Iam-on et al. 2010; Strehl and Ghosh 2002), and
(iii) the pairwise similarity approach that makes use of co-occurrence relationships between
all pairs of data points (Ayad and Kamel 2003; Fern and Brodley 2003; Fred 2001; Fred and
Jain 2002, 2003, 2005; Monti et al. 2003).

Of particular interest here is the pairwise similarity approach, in which the final data partition
is derived based on relations amongst data points represented within the similarity matrix.
This is widely known as the co-association (CO) matrix (Fred and Jain 2005). This particular
matrix denotes co-occurrence statistics between each pair of data points, especially in term
of the proportion of base clusterings in which they are assigned to the same cluster. In
essence, the CO matrix can be regarded as a new similarity matrix, which is superior to
the original distance based counterpart (Jain and Law 2005). It has been wildly applied to
various application domains such as gene expression data analysis (Monti et al. 2003; Swift
et al. 2004) and satellite image analysis (Kyrgyzov et al. 2007).

This approach has gained popularity and become a practical alternative mainly due to its
simplicity. However, it has been criticized because the underlying matrix only considers the
similarity of data points at coarse level and completely ignores those existing amongst clus-
ters (Fern and Brodley 2004; Iam-on et al. 2008). As a result, by not exploiting available
information regarding cluster associations, many relations are unknown, and yet are assigned
a similarity value of zero. For this reason, the authors introduced new methods for generating
two link-based pairwise similarity matrices, named connected-triple-based similarity (CTS)
and SimRank-based similarity (SRS) matrices, respectively (Iam-on et al. 2008). Both meth-
ods work on the basic conjecture of taking into consideration as much information, embedded
in a cluster ensemble, as possible when finding the similarity between data points. To dis-
cover similarity values, they consider both the associations among data points as well as those
among clusters in the ensemble using link-based similarity measures (Calado et al. 2006; Jeh
and Widom 2002; Klink et al. 2006). Figure 1 demonstrates the effectiveness of the link-based
ensemble approach over the gene expression data of leukemia patients (Armstrong et al. 2002).
In particular, the link-based ensemble approach can discover clusters (i.e., groups of patients)
more accurately than several clustering techniques (SL: single-linkage, CL: complete-linkage,
AL: average linkage and k-means) usually used by bioinformaticians.

This paper presents the LinkCluE package, which implements the aforementioned link-based
methods (both established methods and our own improvements) for solving the cluster ensem-
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Figure 1: Clusters discovered by different clustering algorithms on the gene expression data
of leukemia patients. Note that true clusters are shown by two colors of red and blue, in the
illustration of ‘Original Data’.

ble problems. It is developed using the mathematical software MATLAB (The MathWorks,
Inc. 2007). In addition to the implementation of the link-based similarity algorithms, the
package also provides a number of useful functions (by making use of the built-in functions in
MATLAB) for other phases in the cluster ensemble framework. A variety of evaluation mea-
sures, based on both internal and external criteria, are also offered for assessing the quality of
clustering results. The rest of this paper is organized as follows. Section 2 presents a formal
definition of the cluster ensemble problem and its general framework. Section 3 provides a
review on the pairwise similarity approach using link-based similarity matrices. The package
LinkCluE is thoroughly introduced in Section 4. Illustrative examples of exploiting the pack-
age with real and synthetic data are included in Section 5. The applicability of the package
is discussed in Section 6, with perspective of further work and continued expansion of the
package.

2. The cluster ensemble problem

2.1. Problem formulation and framework

Let X = {x1, x2, . . . , xN} be a set of N data points and let Π = {π1, π2, . . . , πM} be a set
of M base clustering results, which is referred to as a cluster ensemble. Each base clustering
result (called an ensemble member) returns a set of clusters πi = {Ci

1, C
i
2, . . . , C

i
ki
}, such that⋃ki

j=1C
i
j = X, where ki is the number of clusters in the i-th clustering. For each x ∈ X, C(x)

denotes the cluster label to which the data point x belongs. In the i-th clustering, C(x) = j
if x ∈ Ci

j . The problem is to find a new partition π∗ of a data set X that summarizes
the information from the cluster ensemble Π. The general framework of cluster ensembles is
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Figure 2: The basic process of cluster ensembles. It first applies multiple base clusterings
to a dataset X to obtain diverse clustering decisions (π1 . . . πM ). Then, these solutions are
combined to establish the final clustering result (π∗) using a consensus function.

shown in Figure 2. Accordingly, multiple input clusterings, known as ensemble members or
base clusterings, are intelligently aggregated to form a final data partition. There are two
main stages of: (i) generating the cluster ensemble, and (ii) producing the final partition,
which is normally referred to as a consensus function. See Hornik (2005) for the example of
a cluster ensemble framework, with which the implementation in R has also been provided.

2.2. Cluster ensemble generation

It has been shown that ensembles are most effective when constructed from a set of predictors
whose errors are distinct (Kittler et al. 1998). To a great extent, the diversity amongst
ensemble members is introduced to enhance the result of an ensemble (Kuncheva and Vetrov
2006). This appears to be analogous to the Central Limit Theorem in which multiple samples
that contain errors/randomness, when combined, reveal the true underlying distribution.
Particularly to data clustering, the results obtained with any single algorithm (e.g., k-means
Hochbaum and Shmoys 1985 and hierarchical clusterings Jain et al. 1999) over many iterations
are typically very similar. In such a circumstance where all ensemble members agree on
how a dataset should be partitioned, aggregating the base clustering results will show no
improvement over any of the constituent members. Several approaches have been proposed
to introduce artificial instabilities in clustering algorithms, hence the diversity within a cluster
ensemble. The following ensemble generation methods yield different clusterings of the same
data, by exploiting different cluster models and different data partitions.

� Homogeneous ensembles: Base clusterings are created using the repeated runs of a single
clustering algorithm, each with a unique set of parameters. Following this, the k-means
technique has often been employed with a random initialization of cluster centers (Fred
and Jain 2002, 2003, 2005; Gionis et al. 2005; Iam-on et al. 2008; Topchy et al. 2004). An
ensemble of k-means is computational efficient as its time complexity is O(kNM), where
k, N and M denote the number of clusters, the number of data points and the number
of base clusterings, respectively. In fact, other non-deterministic clustering techniques
(whose the results obtained from multiple runs are dissimilar) such as PAM and CLARA
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(see Kaufman and Rousseeuw 1990 for details) can also be used to form homogeneous
ensembles. However, as compared with k-means, the ensembles of PAM and CLARA
are less efficient with time complexity being O(Mk(N−k)2) and O(M(ks2+k(N−k))),
respectively. Note that s denotes the sample size (s < N). Unlike the aforementioned
alternatives of base clustering, hierarchical clustering techniques (e.g., SL, CL and AL)
are deterministic with the identical result being achieved from multiple runs for any
given number of clusters, k. Hence, such methods can not generate diversity within a
homogeneous ensemble.

� Selection of k: The output of any clustering algorithm is dependent on the initial choice
of the number of clusters k. To acquire the ensemble diversity, base clusterings are
created using randomly selected values of k from a pre-specified interval (see Iam-on
et al. 2008 and Iam-on et al. 2010 for examples). Intuitively, k should be greater than the
expected number of clusters and the common rule-of-thumb is k =

√
N (Fred and Jain

2005; Hadjitodorov et al. 2006; Kuncheva and Vetrov 2006). This generation scheme
allows a large number of clustering algorithms, both partitioning and hierarchical, to
be used as base clusterings. However, k-means is still often employed for the efficiency
reason. It is noteworthy that the time complexity of creating cluster ensembles with a
hierarchical clustering technique being used as base clusterings is O(N2M).

� Data subspacing/sampling: Cluster ensembles can also be created by applying manifold
subsets of initial data to base clusterings. It is intuitively assumed that each cluster-
ing algorithm can provide different levels of performance for different partitions of a
dataset (Domeniconi and Al-Razgan 2009). Practically, data partitions are obtained by
projecting data onto different subspaces (Fern and Brodley 2003; Topchy et al. 2003),
choosing different subsets of features (Strehl and Ghosh 2002; Yu et al. 2007), or data
sampling (Dudoit and Fridyand 2003; Fischer and Buhmann 2003; Minaei-Bidgoli et al.
2004).

� Heterogeneous ensembles: As an alternative, heterogeneous ensembles may be exploited,
where the diversity is induced by allowing each base clustering to be generated using
a different clustering algorithm (Ayad and Kamel 2003; Hu and Yoo 2004; Law et al.
2004).

In addition to using one of these methods, any combination of them can be applied as well
(Domeniconi and Al-Razgan 2009; Fred and Jain 2006; Iam-on et al. 2008; Monti et al. 2003;
Nguyen and Caruana 2007; Strehl and Ghosh 2002).

2.3. Consensus functions

Having obtained the cluster ensemble, a variety of consensus functions have been developed
and made available for generating the ultimate data partition. In general, consensus methods
found in the literature can be categorized into: (i) pairwise similarity, (ii) graph-based and
(iii) feature-based approaches, respectively.

Pairwise similarity algorithm

This category of cluster ensemble method is based principally on the pairwise similarity
amongst data points. In particular, given a dataset X = {x1, x2, . . . , xN}, it first gener-
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ates a cluster ensemble Π = {π1, π2, . . . , πM} by applying M base clusterings to the dataset
X. Following that, a N × N similarity matrix is constructed for each ensemble member,
denoted as Sm,m = 1 . . .M . Each entry in this matrix represents the relationship between
two data points. If they are assigned to the same cluster, the entry will be 1, 0 otherwise.
More precisely, the similarity between two data points xi, xj ∈ X from the m-th ensemble
member can be computed as follows:

Sm(xi, xj) =

{
1 if C(xi) = C(xj),
0 otherwise.

(1)

In essence, M similarity matrices are merged to form a CO matrix (Fred and Jain 2005),
various names found in the literature as consensus matrix (Monti et al. 2003), similarity
matrix (Strehl and Ghosh 2002) or agreement matrix (Swift et al. 2004). Each element in the
CO matrix represents the similarity degree between any two data points, which is a ratio of
a number of ensemble members in which these data points are assigned to the same cluster
to the total number of ensemble members. Formally, this similarity between xi, xj ∈ X is
defined as

CO(xi, xj) =
1

M

M∑
m=1

Sm(xi, xj). (2)

Since the CO matrix is a similarity matrix, any similarity-based clustering algorithm can be
applied to this matrix to yield the final partition π∗. Among several existing similarity-based
methods, the most well-known technique is agglomerative hierarchical clustering algorithm.
Specifically, Fred and Jain (2003, 2005) employ the SL and AL agglomerative clusterings to
generate the final partition.

Graph-based methods

The second methodology makes use of the graph representation to solve the cluster ensemble
problem (Fern and Brodley 2004; Strehl and Ghosh 2002). Examples of well-known graph-
based ensemble methods have been introduced in Strehl and Ghosh 2002 (as CSPA, HGPA
and MCLA) and Fern and Brodley 2004 (as HBGF). Firstly, cluster-based similarity par-
titioning algorithm (CSPA) creates a similarity graph, where vertices represent data points
and edges’ weight represent similarity scores obtained from the CO matrix. Afterwards, a
graph partitioning algorithm called METIS (Karypis and Kumar 1998) is used to partition
the similarity graph into k clusters. Hyper-graph partitioning algorithm (HGPA) constructs
a hyper-graph, where vertices represent data points and the same-weighted hyper-edges rep-
resent clusters in the ensemble. Then, the HMETIS technique (Karypis et al. 1999) is applied
to partition the underlying hyper-graph into k parts with roughly of the same size.

In addition, meta-clustering algorithm (MCLA) generates a graph that represents the rela-
tionships among clusters in the ensemble. In this meta-level graph, each vertex corresponds
to each cluster in the ensemble and each edge’s weight between any two cluster vertices is
computed using the binary Jaccard measure (i.e., the ratio of the intersection to the union of
the sets of objects belonging to the two clusters). METIS is also employed to partition this
meta-level graph into k meta-clusters. Effectively, each data point has a specific association
degree to each meta-cluster. This can be estimated from the number of original clusters, to
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which the data point belongs, in the underlying meta-cluster. The final clustering is produced
by assigning each data point to the meta-cluster with which it is most frequently associated
(i.e., with the highest association degree).

Unlike the previous methods, hybrid bipartite graph formulation (HBGF) exploits of the
bipartite graph whose vertices represent both data points and clusters. There is no edge
connecting vertices of the same object type, and the weight of an edge between any data
point and cluster is 1 if the data point belongs to that cluster, 0 otherwise. The spectral
graph partitioning algorithm of Ng et al. (2001) and METIS are exploited to obtain the final
clustering from this graph.

Feature-based approach

The approach transforms the problem of cluster ensembles to clustering categorical data.
Specifically, each base clustering provides a cluster label as a new feature describing each
data point, which is utilized to formulate the ultimate solution (Boulis and Ostendorf 2004;
Nguyen and Caruana 2007; Topchy et al. 2003, 2004). An example of such method is the
iterative voting consensus (IVC) algorithm, which was recently introduced in (Nguyen and
Caruana 2007). It aims to obtain the consensus partition π∗ of data points X from the
categorical data induced by a cluster ensemble Π = {π1, . . . , πM}. Principally, it utilizes
the feature vector Y = {y1, y2, . . . , yN}, with N denoting the number of data points and
yi, i = 1 . . . N being specified as

yi = {π1(xi), . . . , πM (xi)}, (3)

where πg(xi) represents a label of specific cluster in clustering πg, g = 1 . . .M , to which a
data point xi belongs. In each iteration, IVC first estimates the center of each cluster in π∗.
Note that each cluster Cj , j = 1 . . . k in the target clustering π∗ has a cluster center centerj =
{mode(Xj , π1), . . . ,mode(Xj , πM )}, where Xj ⊂ X is the set of data points belonging to the
cluster Cj and mode(Xj , πg) denotes the majority labels (in the clustering πg) of members of
Xj . Having obtains these centers, IVC then reassigns each data point to its closest cluster
center. This is possible using the Hamming distance between M -dimensional vectors that
represent data points and cluster centers. The iterative process continues until there is no
change with the target clustering π∗.

2.4. Evaluating the quality of the data partition

After acquiring the final data partition, its quality is typically assessed using different types of
validity measure. One evaluation category includes so-called internal validity indices, which
evaluate the goodness of a data partition using only quantities and features inherited from the
dataset (Jain et al. 1999). They are usually employed for the task of class discovery, where
true cluster labels are unknown. Examples of such measures are Compactness (Nguyen and
Caruana 2007), Davies-Bouldin (Davies and Bouldin 1979) and Dunn (Dunn 1974). Unlike
these data-characteristic-based validity indices, another family exploits a prior information
of known data partition (Π′) or cluster labels of the data. This is similar to the process
of cross-validation that is used in evaluating machine learning methods. Given a dataset
whose correct clusters are known, it is possible to assess how accurately a clustering method
clusters the data relative to this correct clustering. Crucially, however, the clustering method
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at no time has access to information about the correct clusters; they are only used to assess
the clustering method’s performance. This evaluation category includes a number of external
validity indices such as classification accuracy (Nguyen and Caruana 2007), Rand index (Rand
1971) and adjusted Rand index (Campello 2007). These validity criteria assess the degree
of agreement between two data partitions, where one of the partitions is obtained from a
clustering algorithm (π∗) and the other is the known partition (Π′). They are usually employed
for class prediction (Yu et al. 2007) and empirical comparison of different clustering techniques
(Campello 2007; Fred and Jain 2005). In order to better understand these validity indices,
their details are given below.

Compactness (CP)

It is one of the commonly used measurement criteria, which employ only the information
inherent to the dataset. According the description given by Nguyen and Caruana (2007), CP
measures the average distance between every pair of data points, which belong to the same
cluster. More precisely, it is defined as

CP(π∗) =
1

N

K∑
k=1

nk

(∑
xi,xj∈Ck

d(xi, xj)

nk(nk − 1)/2

)
, (4)

where K denotes the number of clusters in the clustering result, nk is the number of data
points belonging to the k -th cluster, d(xi, xj) is the distance between data points xi and xj ,
and N is the total number of data points in the dataset. Ideally, the members of each cluster
should be as close to each other as possible. Thus, lower value of CP means better cluster
configuration.

Davies-Bouldin (DB)

The DB index makes use of similarity measure Rij between the clusters Ci and Cj , which is
defined upon a measure of dispersion (si) of a cluster Ci and a dissimilarity measure between
two clusters (dij). According to Davies and Bouldin (1979), Rij is formulated as

Rij =
si + sj
dij

, (5)

where dij and si can be estimated by the following equations. Note that vx denotes the center
of cluster Cx and |Cx| is the number of data points in cluster Cx.

dij = d(vi, vj), (6)

si =
1

|Ci|
∑
∀x∈Ci

d(x, vi). (7)

Following that, the DB index is defined as

DB(π∗) =
1

k

k∑
i=1

Ri, (8)
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where Ri = max
j=1...k,i 6=j

Rij .

The DB index measures the average of similarity between each cluster and its most similar
one. As the clusters have to be compact and separated, the lower DB index indicates better
goodness of a data partition.

Dunn

This validity index is introduced by Dunn (1974). Its purpose is to identify compact and
well-separated clusters. For a given number of clusters K, the definition of the Dunn index
is given by the following equation.

Dunn(π∗) = min
i=1...K

(
min

j=i+1...K

(
d(Ci, Cj)

maxk=1...K(diam(Ck))

))
, (9)

where d(Ci, Cj) is the distance between two clusters Ci and Cj , which can be defined as

d(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y). (10)

In addition, diam(Ci) is the diameter of a cluster Ci, which is defined as follows:

diam(Ci) = max
x,y∈Ci

d(x, y). (11)

In a dataset containing compact and well-separated clusters, the distances between the clusters
are expected to be large and the diameters of the clusters are expected to be small. Therefore,
a large value of the Dunn index signifies compact and well-separated clusters.

Classification accuracy (CA)

It measures the number of correctly classified data points of a clustering solution compared
with known class labels. To compute the CA, each cluster from the clustering result is
relabeling with the majority cluster label, which most of data points in that cluster come
from. Then the accuracy of the new labels is measured by counting the number of correctly
labeled data points, in comparison to their known class labels, and dividing by the total
number of data in the dataset.

Let mi is the number of data points with the majority cluster label in cluster i, the CA can be
regarded as the ratio of the number of correctly classified data points to the total number of
data points in the dataset. According to the definition given by Nguyen and Caruana (2007),
the CA is defined as

CA(π∗,Π′) =

∑K
i=1(mi)

N
, (12)

where N is the total number of data in the dataset. The CA ranges from 0 to 1. If the
clustering result takes value 1 of the CA, it denotes that all data points are clustered correctly
and the clustering contains only pure clusters, i.e., each contains data points of the same
cluster label.
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Rand index (RI)

This validity measure takes into account the number of object pairs that exist in the same
and different clusters. More formally, the RI (Rand 1971) can be defined by

RI (π∗,Π′) =
n11 + n00

n11 + n10 + n01 + n00
, (13)

where n11 is the number of pairs of data points that are in the same clusters in both partitions
π∗ and Π′, n00 denotes the number of pairs of data points that are placed in the different
clusters in both π∗ and Π′, n10 is the number of pairs of data points that belong to the
same cluster in π∗ but are in the different clusters in Π′, and n01 indicates the number of
pairs of data points that are put in the different clusters in π∗ but are in the same cluster
in Π′. Intuitively, n11 and n00 can be interpreted as the quantity of agreements between two
partitions, while n10 and n01 are the number of disagreements. The RI has a value between
0 and 1, with the more the value approximates to 1 the higher the agreement is.

Adjusted Rand index (AR)

To correct the main criticisms of the Rand index, that is, its expected value is not zero when
comparing random partitions (Jain and Dubes 1998), Hubert and Arabie (1985) introduce
the adjusted Rand index (AR). According to notation denoting the Rand index, the AR index
between partition π∗ and Π′ is defined by the following equation. Note that the higher the
AR value is, the greater the agreement becomes.

AR(π∗,Π′) =
n11 − (n11+n10)(n11+n01)

n00

(n11+n10)+(n11+n01)
2 − (n11+n10)(n11+n01)

n00

. (14)

3. The link-based cluster ensemble approach

To enhance the performance of the original pairwise similarity approach (Fred and Jain 2005;
Strehl and Ghosh 2002), the authors employed link-based similarity measures to refine the
evaluation of similarity values among data points (Iam-on et al. 2008). As a result, the
connected-triple-based similarity (CTS) and the SimRank-based similarity (SRS) matrices
are established with substantially less unknown entries, as compared to the conventional CO
matrix. In addition, the approximate SimRank-based similarity (ASRS) matrix is introduced
as an efficient variation of the SRS counterpart. The experiment results shown in Iam-on
et al. (2008) suggest that such techniques can help revealing implicit relationship amongst
data points, which is not possible using the original co-occurrence statistical approach. The
underlying intuition and formal descriptions of the two link-based similarity methods are
thoroughly reviewed herein. Note that a cluster ensemble in this approach is generated using
a homogeneous collection of k-means as base clusterings, each with a random initialization of
cluster center. In addition, a number of clusters k employed in these base clusterings is either
fixed to a specific value (k =

√
N) or varies within a definite range (k ∈ {2, 3, . . . ,

√
N}),

where N is the number of data points.
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Figure 3: A graphical representation of a cluster ensemble Π = {π1, π2, π3}, where π1 =
{C1

1 , C
1
2 , C

1
3 , C

1
4 , C

1
5}, π2 = {C2

1 , C
2
2 , C

2
3} and π3 = {C3

1 , C
3
2 , C

3
3 , C

3
4 , C

3
5}.

3.1. The connected-triple-based similarity (CTS) matrix

The connected-triple method (Klink et al. 2006) has been developed to assess the similarity
amongst author names and identify possible duplicates (i.e., name pairs with high similarity
values) within publication databases. It makes use of a network of co-authoring information
G = (V,E), where V is the set of vertices each corresponding to a particular name, and E is
the set of edges each connecting two authors if they co-author a publication(s). The similarity
of any vx, vy ∈ V can be estimated by counting the number of connected-triples (i.e., triples)
they are part in. Formally, a triple, Triple = (VTriple, ETriple), is a subgraph of G containing
three vertices VTriple = {vx, vy, vk} ⊂ V and two edges ETriple = {exk, eyk} ⊂ E, with exy 6∈ E.
Its specific application to the cluster ensemble problem is illustrated in Figure 3.

In this illustration of a clustering ensemble Π, circle vertices denote data points xi, i = 1 . . . N ,
whilst square nodes represent clusters in each clustering πm,m = 1 . . . 3. Additionally, there
exists an edge between a data point xi and a cluster Cm

j if xi belongs to Cm
j within the base

clustering result πm. In particular, data points x1 and x2 are considered to be similar with
respect to the clustering results π2 and π3, in which they are assigned to the same clusters
(clusters C2

1 and C3
1 , respectively). However, their similarity is perceived as zero using the

information given in the first clustering result, π1, alone. Intuitively, despite being assigned
to different clusters, their similarity may be revealed if these clusters are seemingly similar.
Using the connected-triple technique, cluster C1

1 and C1
2 are justified similar due to the fact

that they possess 2 connected-triples in which cluster C2
1 and C3

1 are centers of the triples.

Originally, the number of triples associated with any two objects is summed up as a whole
number. This simple counting might be sufficient for data points or other indivisible objects.
However, to evaluate the similarity between clusters, it is crucial to take into account the
characteristics like shared data members among clusters. Inspired by this insight, the new
weighted connected-triple algorithm for the problem of cluster ensembles has been introduced.

Weighted connected-triple (WCT) algorithm

Given a cluster ensemble Π of a set of data points X, a weighted graph G = (V,W ) can be
constructed where V is the set of vertices each representing a cluster in Π and W is a set
of weighted edges between clusters. Formally, the weight assigned to the edge wij connect-
ing clusters Ci, Cj ∈ V is estimated in accordance with the proportion of their overlapping
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members.

wij =
|XCi ∩XCj |
|XCi ∪XCj |

, (15)

where XCi ⊂ X denotes the set of data points belonging to cluster Ci. Instead of counting
the number of triples as a whole number, the weighted connected-triple method regards each
triple as the minimum weight of the two involving edges.

WCT k
ij = min(wik, wjk), (16)

where WCT k
ij is the count of the connected-triple between clusters Ci, Cj ∈ V whose common

neighbor is cluster Ck ∈ V . The count of all q (1 ≤ q < ∞) triples between cluster Ci and
cluster Cj can be calculated as follows:

WCT ij =
q∑

k=1

WCT k
ij . (17)

Following that, the similarity SimWCT (i, j) between clusters Ci and Cj can be estimated as
follows, where WCTmax is the maximum WCT xy value of any two clusters within the cluster
ensemble Π.

SimWCT (i, j) =
WCT ij

WCTmax
. (18)

Connected-triple-based similarity (CTS) matrix

This adopts the cluster-oriented approach previously described to enhance the quality of the
conventional similarity matrix, i.e., co-association. Specifically, for any ensemble member
πm ∈ Π, m = 1 . . .M , the similarity between data points xi, xj ∈ X is estimated using
Equation 19, where DC ∈ (0, 1] is a constant decay factor (i.e., confidence level of accepting
two non-identical objects as being similar).

Sm(xi, xj) =

{
1 if C(xi) = C(xj),

SimWCT (C(xi), C(xj))×DC otherwise.
(19)

Following that, each entry in the CTS matrix can be computed as

CTS (xi, xj) =
1

M

M∑
m=1

Sm(xi, xj). (20)

3.2. The SimRank-based similarity (SRS) matrix

SimRank (Jeh and Widom 2002) has been considered as the benchmark technique for link-
based similarity evaluation (Calado et al. 2006). It extends the scope of similarity estimation
beyond the local context of adjacent neighbors, with the assumption that neighbors are similar
if their neighbors are similar as well. Essentially, the similarity of any two vertices, vi, vj ∈ V
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in a graph G = (V,E), where V and E are sets of vertices and edges, respectively, can be
calculated as follows:

s(vi, vj) =
DC

|Nvi ||Nvj |

|Nvi |∑
x=1

|Nvj |∑
y=1

s(Nx
vi , N

y
vj ), (21)

where DC ∈ (0, 1] is a decay factor, Nvi ⊂ V and Nvj ⊂ V are the neighbor sets whose
members are directly linked to vertices vi and vj , respectively. Individual neighbors are
specified as Nx

vi and Ny
vj , for 1 ≤ x ≤ |Nvi | and 1 ≤ y ≤ |Nvj |. Note that s(vi, vj) = 0

when Nvi = ∅ or Nvj = ∅. It is suggested by Jeh and Widom (2002) that the optimal
similarity measures could be obtained through the iterative refinement of similarity values to
a fixed-point (i.e., after t iterations).

lim
t→∞

Rt(vi, vj) = s(vi, vj). (22)

This can be simplified as

Rt+1(vi, vj) =
DC

|Nvi ||Nvj |

|Nvi |∑
x=1

|Nvj |∑
y=1

Rt(N
x
vi , N

y
vj ). (23)

At the outset, this iterative process starts off using the lower bound of: R0(vi, vj) = 1 if
vi = vj , and 0 otherwise.

Applying SimRank to the cluster ensemble problem

Besides considering a cluster ensemble as a network of clusters only (as with the CTS algo-
rithm), a bipartite representation can be utilized to reveal more hidden relations. Figure 4(a)
and 4(b) depict the cluster results of two base clusterings (i.e., π1 and π2), and the corre-
sponding bipartite graph is presented in Figure 4(c). Given a cluster ensemble Π, a graph
G = (V,E) can be constructed, where V is a set of vertices representing both data points and
clusters in the ensemble, and E denotes a set of edges between data points and the clusters
to which they are assigned. Let SRS(a, b) be the entry in the SRS matrix, which represents
the similarity between any pair of data points or the similarity between any two clusters in
the ensemble. For a = b,SRS (a, b) = 1. Otherwise,

SRS (a, b) =
DC

|Na||Nb|
∑

a′∈Na

∑
b′∈Nb

SRS(a′, b′), (24)

where DC is constant decay factor within the interval (0, 1], Nx ⊂ V denotes the set of
vertices connecting to x ∈ V . Accordingly, the similarity between data points xi and xj is
the average similarity between the clusters to which they belong, and likewise, the similarity
between clusters is the average similarity between their members.

Iterative refinement of SimRank measure

The similarity measure between any pair of vertices can be computed through the iterative
refinement process. Similar to Equation 22, the similarity SRS(a, b) between vertices a, b ∈ V
can be found by
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Figure 4: A bipartite-graph representation of cluster ensemble Π = {π1, π2}, where π1 =
{C1

1 , C
1
2}, π2 = {C2

1 , C
2
2} and X = {x1, . . . , x7}.

lim
r→∞

SRS r(a, b) = SRS (a, b). (25)

In particular, let SRSr(a, b) be a similarity degree at iteration r, the estimation of the simi-
larity score at the next iteration r + 1 is defined as follows:

SRS r+1(a, b) =
DC

|Na||Nb|
∑

a′∈Na

∑
b′∈Nb

SRS r(a
′, b′). (26)

Note that, initially, SRS 0(a, b) = 1 if a = b and 0 otherwise.

3.3. The approximate SimRank-based similarity (ASRS) matrix

To improve the applicability of the SRS approach, the ASRS (approximate SRS) method is
introduced as a more efficient variation of the SRS, without the iterative process of similarity
refinement. Formally, a bipartite graph G = (V,E) is constructed to represent a cluster
ensemble Π, where V is a set of vertices representing both data points and clusters in the
ensemble and E denotes a set of edges between data points and their clusters. Let ASRS(a, b)
be the entry in the ASRS matrix, which represents the similarity between data points a, b ∈ V .
For a = b, ASRS (a, b) = 1. Otherwise,

ASRS (a, b) =
1

|Na||Nb|
∑

a′∈Na

∑
b′∈Nb

SimClus(a′, b′), (27)

where Nx ⊂ V denotes the set of vertices connecting to data point x ∈ V (i.e., a set of clusters
to which x belongs) and SimClus(y, z) is a similarity value between clusters y and z, which
can be obtained using the weighted SimRank algorithm described below.

Weighted SimRank (wSR)

Given a cluster ensemble Π, a graph G = (V,W ) can be constructed where V is the set of
vertices each representing a cluster in Π and W is a set of weighted edges between clusters.
Formally, the weight assigned to the edge wij connecting clusters i, j ∈ V is estimated in
accordance with the proportion of their overlapping members.
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wij =
|Xi ∩Xj |
|Xi ∪Xj |

, (28)

where Xp ⊂ X denotes the set of data points belonging to cluster p ∈ V . Let SimClus(y, z)
be a similarity between any two clusters. For y = z,SimClus(y, z) = 1; otherwise, it can be
estimated as follows.

SimClus(y, z) =
wSR(y, z)

wSRmax
× DC , (29)

where DC ∈ (0, 1] is the confidence level to accept two non-identical clusters to be similar,
and wSRmax is the maximum wSR value of any two clusters y and z, being defined as

wSR(y, z) =
1

|Ny||Nz|
∑

y′∈Ny

∑
z′∈Nz

(wyy′ × wzz′), (30)

where Ny, Nz ⊂ V are the set of clusters to which clusters y and z are linked (i.e., sharing
data points), respectively.

3.4. Time complexity analysis

CTS matrix. Given N data points, a cluster ensemble of M ensemble members (i.e., base
clusterings) and C clusters (i.e., a total number of clusters across all ensemble members), the
time complexity of creating the CTS matrix is O(N2M + C2T1), where T1 is the average of
|Lx| in the network of clusters, Lx denotes the set of clusters each directly links to the cluster
x, and |g| represents the size of any set g, respectively.

SRS matrix. In addition, the time requirement of generating the SRS matrix is O(R(N2T2 +
C2T3)), where T2 is the average of |Ga|.|Gb| over all pairs of data points (a, b) in a bipartite
network, Ga and Gb are the set of clusters linked to data points a and b, respectively. Similarly,
T3 denotes the average of |Gc|.|Gd| over all pairs of clusters (c, d), Gc and Gd are the set of
data points linked to clusters c and d. With the SimRank algorithm, R is the number of
iterations of refining similarity values.

ASRS matrix. As for the ASRS matrix, the time complexity required for estimating the
pairwise similarity amongst data points is reduced from O(R(N2T2 + C2T3)), with the SRS
method, to O(N2T2+C2T4), where T4 is the average of |Lx|.|Ly| in the network of clusters, Lx

and Ly denote the sets of clusters directly linked to clusters x and y, respectively. Note that
T3 measured in a bipartite network is typically greater than T4 estimated in the single-object
network of clusters. Despite such improvement, the CTS method is more efficient than the
ASRS, since T1 is typically smaller than T4 and T2 is usually greater than M .

4. The LinkCluE package

The objective of LinkCluE package is to provide MATLAB functions for generating and an-
alyzing cluster ensembles using three link-based similarity matrices (CTS, SRS and ASRS)
described in Section 3. All functions included in the LinkCluE package are user-callable, like
any standard function in the MATLAB environment. Figure 5 illustrates the main functions
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Figure 5: Main functions of the LinkCluE package.

of the underlying package (generating a cluster ensemble, creating link-based similarity ma-
trices, consensus functions and evaluating clustering results, respectively), each of which is
further described below.

4.1. Generating the cluster ensemble

The first step of the cluster ensemble framework is to establish a cluster ensemble Π =
{π1, . . . , πM}, which is a collection of M base clustering results (i.e., ensemble members).
In the LinkCluE package, the crEnsemble function is used to create a matrix of cluster
ensemble using k-means (with random initializations) as a base clustering algorithm. The
input argument set consists of X, M, k and scheme, which are the data matrix, the number
of base clusterings, the number of preferred clusters in base clusterings and the generation
scheme (i.e., 1 for Fixed k and 2 for Random k), respectively. In particular, X is a N×d matrix
of data, whose rows correspond to N observations (i.e., data points) and columns correspond
to d attributes (see example of the Four-Gaussian dataset, FGD.mat, in SampleData directory
or Table 1).

For the first ensemble generation scheme (i.e., Fixed k), a constant value k is used as the
number of clusters across all M k-means base clusterings, whilst a random number within the
range of [2, k] is employed for the other generation scheme (i.e., Random k). The output E

produced from this function is an N ×M matrix of cluster labels for N data points from M

base clusterings. In practice, the crEnsemble function is executed as follows:

> E = crEnsemble(X, M, k, scheme)

Note that, crEnsemble is a non-deterministic function, such that each call may result in
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different output E. This is due to random initializations in the k-means algorithm and the
random number of k with Random k scheme. In addition, users can also import their own
cluster ensembles (e.g., created by using other clustering algorithms) to the LinkCluE package,
but they must comply with format previously set out (see Table 2 for an example).

4.2. Creating link-based similarity matrix

With the cluster ensemble produced from Section 4.1, the relationship between any pair of
data points can be calculated using link-based measures. The LinkCluE package provides
three functions for creating such similarity matrix: cts, srs and asrs. Their main input
argument is a matrix of cluster ensemble E, which can either be obtained using any base
clustering algorithms or the crEnsemble function. A similarity matrix S, acquired as the
output of cts, srs or asrs, is used together with any similarity-based clustering algorithm
(e.g., hierarchical agglomerative methods and METIS Karypis and Kumar 1998) to generate
the final clustering result.

� cts function: Input arguments for the cts function consists of E and dc, which are a
matrix of cluster ensemble and a decay factor, respectively. The first argument, E, is a
N×M matrix of cluster labels for each data point obtained from base clusterings, where
N is the number of data points and M is the number of base clusterings. The other
argument, dc ∈ (0, 1], is a constant decay factor (i.e., confidence level of accepting two
non-identical clusters as being similar). The output produced by the cts function is an
N × N matrix, S, of pair-wise similarity measures amongst data points. Accordingly,
the cts function can be called using the following command:

> S = cts(E, dc)

� srs function: While the first two input arguments of the srs function (i.e., E and dc)
are similar to those of the cts function, the additional input variable R is require to
determine the number of iterations for SimRank similarity refinement. The output of
this function is also an N ×N matrix of similarity values, similar to that achieved with
the cts function. The command used to execute the srs function is:

> S = srs(E, dc, R)

� asrs function: This function requires the similar input arguments as the cts function,
E and dc, respectively. It also produces the similar output, an N×N matrix of similarity
values. The asrs function can be executed using the following command:

> S = asrs(E, dc)

4.3. Consensus functions

Having obtained link-based similarity matrices, they can then be input to any similarity-based
clustering algorithms to produce a final clustering. In particular to the LinkCluE package,
the clHC function is provided to perform three different hierarchical agglomerative clustering
methods of: SL, CL and AL, respectively. It accepts a pair-wise similarity matrix S and the
number of clusters in the final data partition (K) as the inputs, and delivers the final clustering
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decisions, CR, which is an N × 3 matrix (of cluster labels for N data points) produced by 3
different methods (SL, CL and AL). Formally, in order to apply these consensus functions to
a given similarity matrix S, the clHC function is employed as follows:

> CR = clHC(S, K)

4.4. Evaluating clustering quality

After acquiring the final data partition, users may need to assess and compare their quality for
further analysis or decision making. In the LinkCluE package, a function cleval is provided
for such assessment. This function makes uses of both internal and external validity criteria
(see Section 2 for details). In particular, three internal validity indices (CP, DB and Dunn)
and three other external validity indices (CA, RI and AR) are employed herein. Note that
low values of CP and DB indices signify good cluster structures, whilst high values of Dunn,
AR, RI and CA indicate good cluster quality.

The cleval function produces a matrix of validity values and a comparison bar chart. It
normally requires three input arguments of X, CR and methods. The first argument is a
data matrix, while the second, CR, can be either vector or matrix of cluster labels for N data
points. The argument methods is a cell of strings specifying methods that used to produce the
clustering result matrix CR. For example, {‘CTS-SL’, ‘CTS-AL’} refers to the CTS matrices
with AL and AL, respectively. This set of strings is used to show as legends in a bar chart. In
addition, the cleval function also has an optional input, truelabels, which can be specified
only when pre-known cluster labels are available. Thus, to evaluate the clustering results,
this function can be called as either

> V = cleval(X, CR, methods)

or

> V = cleval(X, CR, methods, truelabels)

Note that when users specify the argument truelabels, the values of all criteria measures
(including three external indices of CA, AR and RI) will be shown. Otherwise, the function
presents only the three internal indices (i.e., CP, DB and Dunn).

4.5. Using a single command to combine all functions

The package LinkCluE also provides the LinkCluE function to guide users through functional
utility. It is an one-stop function which combines all procedures for solving a cluster ensemble
problem. In practice, the LinkCluE function is executed as follows:

> [CR, V] = LinkCluE(X, M, k, scheme, K, dcCTS, dcSRS, R, dcASRS, truelabels)

This function first create cluster ensemble (E), then generate three link-based similarity matri-
ces. Following that, it produces clustering results (CR) using clHC function and also evaluates
quality of the result (V) using cleval function. Note that truelabels is an option input
argument.
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5. Illustrative examples

This section presents illustrative examples of using the LinkCluE package to solve cluster
ensemble problems, over both synthetic and real datasets.

5.1. Four-Gaussian dataset

This synthetic dataset, acquired from Kuncheva and Vetrov (2006), is initially created in
two dimensions and later added with ten more dimensions of noise. The package LinkCluE
contains file FGD.mat and FGT.mat (within the SampleData directory) for its data content and
true cluster labels. These can be simply imported into the MATLAB environment using the
load built-in MATLAB function. The dataset is graphically shown in Figure 6, where only
values of the two non-noise attributes are employed. Its corresponding data matrix X is also
given in Table 1.

> load SampleData\FGD.mat

> load SampleData\textbackslash FGT.mat

> h = scatter(FGD(:, 1), FGD(:, 2), 50, FGT, `filled')

Having obtained the data matrix X, the cluster ensemble E can be created using the crEnsemble
function. The following commands demonstrate a sample of ensemble generation, in which
the input argument k, i.e., the number of clusters in base clusterings, is simply set to

√
N .

Intuitively, in order to create diversity in an ensemble, k should be greater than the expected

Figure 6: The Four-Gaussian dataset.

attr1 attr2 attr3 attr4 attr5 attr6 attr7 attr8 . . . attr12

data1 -0.331 -0.411 1.810 3.880 1.700 0.185 1.570 1.390 . . . 3.250

data2 0.006 -0.004 0.177 2.370 1.520 2.380 2.570 2.250 . . . 1.710

data3 -0.050 -0.339 2.530 0.598 2.660 2.670 0.638 2.090 . . . 1.920

data4 0.101 0.693 2.060 2.030 2.610 3.770 2.380 1.690 . . . 0.028

data5 -0.160 -0.576 2.930 1.550 3.800 1.760 2.890 0.359 . . . 0.318
...

...
...

...
...

...
...

...
...

. . .
...

data100 4.140 -3.340 1.520 1.510 2.230 0.102 0.496 2.670 . . . 2.600

Table 1: A sample of N × d matrix X of Four-Gaussian data, where N = 100 and d = 12.
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clustering1 clustering2 clustering3 clustering4 . . . clustering10

data1 3 4 9 5 . . . 4

data2 5 4 4 4 . . . 4

data3 5 4 4 4 . . . 4

data4 5 4 4 4 . . . 4

data5 5 4 4 4 . . . 4
...

...
...

...
...

. . .
...

data100 8 8 5 2 . . . 1

Table 2: A sample of N ×M cluster ensemble matrix E, with N = 100 and M = 10.

number of clusters. The common rule-of-thumb is k =
√
N (Fred and Jain 2005; Kuncheva

and Vetrov 2006; Hadjitodorov et al. 2006).

> k = ceil(sqrt(size(FGD, 1)))

> E = crEnsemble(FGD, 10, k, 1)

As a result, this will generate the cluster ensemble E from the data matrix X, using 10 k -means
base clusterings each with Fixed k scheme (where k = 10). The sample of the output 100×10
matrix E is shown in Table 2. Each entry in E represents a label of the cluster to a particular
data point belongs. Note that, for any data point, the labels acquired from distinct base
clusterings may not be similar.

Subsequently, the cluster ensemble E is utilized to produce link-based similarity matrices. In
order to construct the CTS matrix, named Scts in the following example, with a decay factor
dc of 0.8, the required command is:

> Scts = cts(E, 0.8)

Similarly, the SRS and ASRS matrices, named Ssrs and Sasrs here, can be created as follows.
The decay factor dc is set to be 0.8 for both matrices and the number of refinement iteration
R for the SRS matrix is set to 3. Note that the output matrices (Scts, Ssrs and Sasrs) are
with the same format as demonstrated in Table 3.

> Ssrs = srs(E, 0.8, 3)

> Sasrs = asrs(E, 0.8)

Then, to obtain the final clustering result, any similarity-based clustering algorithm can be
applied to the aforementioned link-based similarity matrices. For such purpose, the LinkCluE
package provides the clHC function that makes use of three different agglomerative clustering
methods (SL, CL and AL) as consensus functions. In practice, with 4 being number of desired
clusters (K), the following command constructs the matrix CR, which contains 9 clustering
results each corresponds to a unique combination of the similarity matrix (CTS, SRS or
ASRS) and the consensus function (SL, CL or AL). Table 4 presents a sample of the CR

matrix.
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data1 data2 data3 data4 data5 . . . data100

data1 1 0.6315 0.5862 0.5862 0.5862 . . . 0.0101

data2 0.6315 1 0.9547 0.9547 0.9547 . . . 0.0101

data3 0.5862 0.9547 1 1 1 . . . 0.0101

data4 0.5862 0.9547 1 1 1 . . . 0.0101

data5 0.5862 0.9547 1 1 1 . . . 0.0101
...

...
...

...
...

...
. . .

...

data100 0.0101 0.0101 0.0101 0.0101 0.0101 . . . 1

Table 3: A sample of N ×N similarity matrix, where N = 100.

CTS-SL CTS-CL CTS-AL SRS-SL SRS-CL SRS-AL . . . ASRS-AL

data1 1 1 1 1 3 2 . . . 2

data2 1 1 1 1 3 2 . . . 2

data3 1 1 1 1 3 2 . . . 2

data4 1 1 1 1 3 2 . . . 2

data5 1 1 1 1 3 2 . . . 2
...

...
...

...
...

...
...

. . .
...

data100 4 3 4 4 1 4 . . . 4

Table 4: A sample of N × 9 matrix of clustering results CR from 9 combinations of similarity
matrices and consensus functions (CTS-SL, CTS-CL, CTS-AL, SRS-SL, SRS-CL, SRS-AL,
ASRS-SL, ASRS-CL and ASRS-AL), where N = 100. Note that the clustering results of
ASRS-SL and ASRS-CL are omitted for the presentation simplicity.

Validity index CTS-SL CTS-CL CTS-AL SRS-SL SRS-CL . . . ASRS-AL

CP 5.4115 5.4030 5.4030 5.4115 5.4115 . . . 5.3995

DB 1.1441 1.2287 1.2287 1.1441 1.3677 . . . 1.2600

Dunn 1.3570 1.3570 1.3570 1.3570 1.3570 . . . 1.3887

Table 5: A sample of validity matrix V, containing the evaluation of clustering results achieved
with nine cluster ensemble methods (CTS-SL, CTS-CL, CTS-AL, SRS-SL, SRS-CL, SRS-
AL, ASRS-SL, ASRS-CL and ASRS-AL), using three internal validity criteria (CP, DB, and
Dunn). Note that the validity scores of SRS-AL, ASRS-SL and ASRS-CL are omitted for the
presentation simplicity.
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Figure 7: A bar chart that compares performance of nine link-based ensemble methods, in
accordance with three internal validity indices of CP, DB and Dunn, respectively.

Figure 8: A bar chart that compares performance of nine link-based ensemble methods, in
accordance with three internal validity indices (CP, DB and Dunn) and three external validity
indices (AR, RI and CA), respectively.

> CR = [clHC(Scts, 4) clHC(Ssrs, 4) clHC(Sasrs, 4)]

After obtaining the clustering results, users can evaluate the quality or goodness of those
outcomes using the cleval function in the LinkCluE package. When true cluster labels are
unknown, users can use the following command to launch the cleval function.

> methods = {`CTS-SL', `CTS-CL', `CTS-AL', `SRS-SL', `SRS-CL', `SRS-AL',

`ASRS-SL', `ASRS-CL', `ASRS-AL'}

> V = cleval(FGD, CR, methods)

The clustering results in CR will be assessed using three internal validity criteria, and the
matrix of validity measures V (similar to that shown in Table 5) together with a comparison
bar chart (see Figure 7 for an example) are produced for further analysis.

On the other hand, if true cluster labels are available, users can assess the quality of clus-
tering results using both internal and external validity criteria. In such case, the optional



Journal of Statistical Software 23

true cluster label

data1 1

data2 1

data3 1

data4 1

data5 1
...

...

data100 4

Table 6: A sample of N × 1 true cluster labels vector, truelabels, with N = 100.

Validity index CTS-SL CTS-CL CTS-AL SRS-SL SRS-CL . . . ASRS-AL

CP 5.4115 5.4030 5.4030 5.4115 5.4115 . . . 5.3995

DB 1.1441 1.2287 1.2287 1.1441 1.3677 . . . 1.2600

Dunn 1.3570 1.3570 1.3570 1.3570 1.3570 . . . 1.3887

AR 1.0000 0.9731 0.9731 1.0000 1.0000 . . . 0.9456

RI 1.0000 0.9901 0.9901 1.0000 1.0000 . . . 0.9800

CA 1.0000 0.9900 0.9900 1.0000 1.0000 . . . 0.9800

Table 7: A sample of validity matrix V, containing the evaluation results achieved with nine
cluster ensemble methods (CTS-SL, CTS-CL, CTS-AL, SRS-SL, SRS-CL, SRS-AL, ASRS-SL,
ASRS-CL and ASRS-AL) using six validity criteria (CP, DB, Dunn, AR, RI and CA). Note
that the validity scores of SRS-AL, ASRS-SL and ASRS-CL are omitted for the presentation
simplicity.

Validity index SL CL AL k-means

CP 7.0209 5.5076 5.4115 5.9508

DB 1.5122 1.4101 1.3454 1.6946

Dunn 0.6631 1.2631 1.3570 0.6502

AR 0.2888 0.8725 1.0000 0.5683

RI 0.6141 0.9529 1.0000 0.8248

CA 0.5100 0.9500 1.0000 0.7300

Table 8: A validity matrix, containing the evaluation results achieved with four single-run
clustering techniques (SL, CL, AL and k-means) using six validity criteria (CP, DB, Dunn,
AR, RI and CA).
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Figure 9: Nine clustering results for the Four-Gaussian dataset using Package LinkCluE,
compared with those of SL, CL, AL, k-means and original data, respectively.

truelabels input argument (N × 1 vector) must be specified prior to the execution of the
cleval function. For the example illustrated so far, the true cluster labels for Four-Gaussian
data is provided as the file FGT.mat within the SampleData directory. This vector can be
simply imported into the MATLAB environment using the load built-in MATLAB function.
The format of this truelabels vector is shown in Table 6.

The following command is employed in order to launch the cleval function, such that the
vector of known cluster labels is also exploited for quality evaluation.
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> V = cleval(FGD, CR, methods, FGT)

Effectively, this will assess the quality of clustering results CR using both internal and external
validity indices. It also produces the validity matrix V (as shown in Table 7) and a comparison
bar chart (see Figure 8).

To demonstrate the effectiveness of the cluster ensemble approach, the results shown in Ta-
ble 7 are compared with similar evaluation measures of applying four single-run clustering
methods (SL, CL, AL and k-means) to the Four-Gaussian dataset (see Table 8). In addition,
Figure 9 provides a graphical means for this comparison. Accordingly, it is clearly seen that
package LinkCluE can provide almost perfect clustering results for Four-Gaussian dataset and
drastically improve performance of the base clustering (i.e., k-means).

5.2. Leukemia dataset

This real data is exploited in (de Souto et al. 2008) for gene expression data clustering. It
contains expression values of 1,081 genes collected from the Affymetrix U95A chip and 72
blood samples of leukemia patients at the time of diagnosis or relapse. These samples are
categorized into 2 classes of 24 acute lymphoblastic leukemia (ALL) samples and 48 samples
of lymphoblastic leukemias with MLL translocations (MLL). Further biological details of this
dataset can be found in (Armstrong et al. 2002). The package LinkCluE includes file LD.mat

and LT.mat (within the SampleData directory) for its data content and true cluster labels.

> load SampleData\LD.mat

> load SampleData\LT.mat

In a real world dataset, variables can be measured against different scales. For instance, one
variable can measure the blood pressure and another variable can measure heart rate. These
discrepancies can distort the proximity calculation of any clustering technique. Hence, vari-
ables are usually normalized before being employed in a machine learning model. Specifically
to the Leukemia dataset, MATLAB’s built-in zscore function is exploited to transform all the
attribute values to those expressed on the uniform scale.

> LD = zscore(LD)

To obtain clustering results from Package LinkCluE, the one-stop function LinkCluE can be
conveniently used as follows:

> k = ceil(sqrt(size(LD, 1)))

> [CR, V] = LinkCluE(LD, 10, k, 1, 2, 0.8, 0.8, 3, 0.8, LT)

This will first generate the cluster ensemble E from the data matrix LD, using 10 k -means base
clusterings each with Fixed k scheme (where k = 9). Afterward, three link-based similarity
matrices (CTS, SRS and ASRS) are constructed from the cluster ensemble E (all with a decay
factor dc of 0.8 and the number of iterations R = 3 for the SRS matrix. The final nine clustering
results CR are subsequently produced by the clHC function, using K = 2. In particular, the
optional input argument of true cluster labels LT, is specified. Therefore, clustering results
CR are evaluated using both internal and external validity criteria. Finally, the function will
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Validity index CTS-SL CTS-CL CTS-AL SRS-SL SRS-CL . . . ASRS-AL

CP 45.6950 45.1790 44.6520 45.6950 44.6740 . . . 44.6520

DB 2.8559 4.7783 3.0839 2.8559 2.7857 . . . 3.0839

Dunn 0.6473 0.3838 0.6430 0.6473 0.6967 . . . 0.6430

AR 0.1178 -0.0030 0.6343 0.1178 0.4534 . . . 0.6343

RI 0.5931 0.4992 0.8220 0.5931 0.7375 . . . 0.8220

CA 0.7222 0.6667 0.9028 0.7222 0.8472 . . . 0.9028

Table 9: A validity matrix V of Leukemia dataset, containing the evaluation results achieved
with nine cluster ensemble methods (CTS-SL, CTS-CL, CTS-AL, SRS-SL, SRS-CL, SRS-AL,
ASRS-SL, ASRS-CL and ASRS-AL) using six validity criteria (CP, DB, Dunn, AR, RI and
CA). Note that the validity scores of SRS-AL, ASRS-SL and ASRS-CL are omitted for the
presentation simplicity.

Figure 10: A bar chart that compares performance of nine link-based ensemble methods for
Leukemia dataset, in accordance with three internal validity indices (CP, DB and Dunn)
and three external validity indices (AR, RI and CA), respectively. Note that the enlarged
sub-chart is for presentational purpose in this paper only.

Validity index SL CL AL k-means

CP 44.7370 44.7370 44.7370 44.7370

DB 40.9750 40.9750 40.9750 40.9750

Dunn 0.0244 0.0244 0.0244 0.0244

AR -0.0138 -0.0138 -0.0138 -0.0138

RI 0.5403 0.5403 0.5403 0.5403

CA 0.6667 0.6667 0.6667 0.6667

Table 10: A validity matrix of Leukemia dataset, containing the evaluation results achieved
with four single-run clustering techniques (SL, CL, AL and k-means) using six validity criteria
(CP, DB, Dunn, AR, RI and CA).
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Figure 11: Nine clustering results for Leukemia dataset using Package LinkCluE compared
with those of SL, CL, AL, k-means and original data, respectively.

deliver clustering results CR, validity matrix V (see Table 9) and a comparison bar (shown in
Figure 10), respectively.

Similar to the previous example of Four-Gaussian data, the clustering results obtained by the
package LinkCluE are compared to those of four single-run clustering methods (SL, CL, AL
and k-means). The validity matrix of these simple techniques is presented in Table 10.

Due to its high dimensionality, the principal components analysis (PCA) method (Denvijver
and Kittler 1982) is used to help visualizing Leukemia data. The PCA method generates
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a new set of variables, called principal components, each as a linear combination of the
original variables. All the principal components are orthogonal to each other, thus there is
no redundant information. The set of principal components forms an orthogonal basis for the
space of the underlying data. The following command executes the built-in function princomp

that generates a set of principal components for the Leukemia dataset (LD).

> [COEFF, SCORE] = princomp(LD)

Following that, two principal components with the highest score (i.e., the first two columns of
the SCORE matrix, whose rows correspond to original data points) are used to create a simple
visualization of the Leukemia dataset. This is achieved by executing the following command.

> h = scatter(SCORE(:, 1), SCORE(:, 2), 50, LT, `filled')

With the original dataset, Figure 11 compares nine clustering results obtained from the pack-
age LinkCluE with those acquired by using SL, CL, AL and k-means algorithms.

6. Discussion

The LinkCluE package is thoroughly tested on a workstation (Intel Core2 CPU 6600 @2.40GHz,
2GB RAM) with MATLAB version 7.8.0(R2009a). Here it has been shown that LinkCluE
package is effective on real world datasets, such as the Leukemia dataset, for which it pro-
duced excellent results. Nevertheless, there are some limitations of the SRS matrix due to
its operating time complexity. The ASRS method can improve on this to some extent (by
removing the iteration process of SimRank), whilst still being more expensive than the CTS
counterpart.

6.1. Scalability analysis

In order to illustrate the scalability of these link-based techniques, synthesized cluster ensem-
bles are employed to assess the computational time requirement of generating three link-based
matrices. Similar to Cristofor and Simovici (2002), these ensembles are created as: for each
base-clustering (i.e., ensemble member) πt ∈ {π1, . . . , πM}, a data point xi, i = 1, . . . , N is
randomly given a cluster label Lj , j = 1, . . . , c. In the current research, these parameters are:
N ∈ {500, 1, 000, . . . , 5, 000}, c = 10 and M ∈ {2, 3, . . . , 10}. Note that C (i.e., the number of
all clusters in an ensemble) can be estimated by C = c×M .

Since the creation of the link-based matrices depends principally on the magnitudes of N
and C, two types of scalability are assessed: (i) the scalability against the number of data
points (N) for a given value of C and (ii) the scalability against the number of clusters C for
a given value of N . Figure 12 shows the run times (in seconds) for computing the three link-
based matrices over synthesized cluster ensembles with C = 100 and ten distinct numbers
of data points (N ∈ {500, 1, 000, . . . , 5, 000}). The important observation from this figure
is that the run time of generating all three matrices tends to increase quadratically as the
number of data points is increased. In particular to the CTS matrix, the fitted curve, with
R2 = 1, is y = 0.003x2 + 0.026x + 0.094. The fitted curves for ASRS and SRS matrices are
y = 0.040x2+0.021x+0.125, with R2 = 1 and y = 0.094x2+0.298x−1.305, with R2 = 0.999,
respectively. The quantitative measure R2 is known as the ‘goodness’ of fit. It is computed



Journal of Statistical Software 29

Figure 12: Scalability of link-based matrices creation to the number of data points when
C of synthesized cluster ensembles is 100. The fitted lines are given to illustrate quadratic
relations.

Figure 13: Scalability of link-based matrices creation to the number of clusters when N of syn-
thesized cluster ensembles is 5,000. The fitted curves suggest a strong quadratic relationship.

as the fraction of the total variation of the Y values of data points that is attributable to the
assumed fitted curve. Its values typically range from 0 to 1, with values close to 1 indicating
a good fit (Draper and Smith 1998).

In addition, Figure 13 illustrates the execution times over synthesized ensembles with N =
5, 000 and nine different numbers of C (C ∈ {20, 30, . . . , 100}). Similar observations have
been obtained, the run times have quadratic relationship with the values of C. The fitted
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curve for the CTS matrix is y = 0.0002x2 + 0.0649x + 0.7117, with R2 = 0.9991. Likewise,
the fitted curves, both with R2 = 0.999, are y = 0.006x2 + 0.363x+ 2.741 and y = 0.017x2 +
0.622x+ 18.28, for ASRS and SRS matrices, respectively.

6.2. Further improvement

In spite of their effectiveness, the implementation of link-based similarity methods (even the
CTS) similarly suffer from high computational time requirements. This drawback originates
within the algorithms, whose simplified variation may not be able to maintain the original
performance. Hence, the possible solution is to rely on programming language and hardware
technology that may allow the underlying algorithms to be executed more efficiently. Recently,
the multicore-processor architecture has emerged as a new standard of work station with
enhanced capability. To take a full advantage of such innovation, MATLAB and Parallel
Computing Toolbox (included in MATLAB 7.4, R2007a, and higher) address the challenge of
designing a programming language that works well in a multicore system (Moler 2007). In
particular, the two most common paradigms of parallel programming are ‘thread’ and ‘parallel
for-loop’, respectively.

Based on the empirical investigation of Luszczek (2008), threading is less efficient in a mul-
ticore system, as compared to the parallel ‘for-loop’ (named parfor) provided by MATLAB.
In addition, the number of threads should not exceed the actual number of processing core.
This constraint is invalid using the parfor function. A definite precaution of employing this
function is that the results within one iteration should be independent to those of others. Par-
ticularly to the link-based approach discussed thus far, the following example demonstrated
how the parfor function can be used to implement the generation process of the CTS matrix.

Two processing tasks are required to obtain the CTS matrix: (i) first the C × C matrix of
cluster similarity (CLUS) is created by the function WCT1, then (ii) entries in the CLUS matrix
are used to estimated entries of the CTS matrix (N × N matrix of similarity amongst data
points), by the function WCT2. The following code roughly illustrates the way in which the
parfor can be used, where C and N denote the number of clusters and that of data points,
respectively.

Pseudo code for generating the CLUS matrix:

parfor x = 1 : (C - 1)

parfor y = (x + 1) : C

CLUS(x, y) = WCT1(x, y);

end

end

Pseudo code for generating the CTS matrix:

parfor a = 1 : (N - 1)

parfor b = (x + 1) : N}

CTS(a, b) = WCT2(CLUS, a, b);}

end

end

With this example, entries in the CLUS matrix (also those of the CTS matrix) are created
separately, by executing the WCT1 (or WCT2 for the case of CTS matrix) on a number of
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different ‘labs’ (MATLAB sessions). These labs are run on processor cores, but the number of
labs does not have to match the number of cores. Unlike threads, labs do not share memory
with each other, thus allowing them to be execute on several systems connected via a network.
The programming technique displayed in this example can also be applied to implement the
generation of SRS and ASRS matrices.

Future versions of the package will be made available via the web site at http://users.

aber.ac.uk/nii07/. These will include new approximate methodologies that aim to reduce
the computational complexity of link-based similarity measures and extend their applicability
to large datasets. Moreover, a graphical user interface tool will also be provided for efficient
comparison and analysis.

6.3. Further application

The illustrative examples given in this paper (Section 5) for demonstrating the exploitation
of LinkCluE package focus on using built-in MATLAB functions for generating an ensemble
(i.e., kmeans as base clustering technique) and as a consensus function (i.e., linkage as final
clustering function). But, in fact, cts, srs and asrs functions are generic such that they
can be used with any user-generated cluster ensemble E. For instance, an ensemble may be
created from heterogeneous base clusterings or the homogeneous collection each with different
data subspaces.

The resulting matrices (CTS, SRS and ASRS) can be input to any similarity-based clustering
method to derive the final data partition. In particular, the matrix can be transformed into
a weighted graph G = (V,W ), where V is the set of vertices each corresponds to a specific
data point, and W denotes the set of edges’weight between any two vertices. These weights
can be obtained directly from a given similarity matrix. For instance, with the CTS matrix,
wij ∈ W (of the edge connecting vertices vi, vj ∈ V , which correspond to data points xi and
xj , respectively) can be acquired directly from the entry CTS (i, j). Having achieved such
graph, a graph partitioning algorithm (such as METIS Karypis and Kumar 1998) can be
employed to generate the final data partition.

Apart from the application to numerical datasets, the LinkCluE package can also be used
to analyze categorical data. Conceptually, an ensemble E is constructed using any cluster-
ing algorithm for categorical data (e.g., k-modes Huang 1998). Then, cts, srs, asrs and
other functions in this package can be exploited to create similarity matrices, derive the final
clustering results and their evaluation measures.

Acknowledgments

The authors would like to thank the reviewer and the associate editor for their useful com-
ments, and Dr. Tossapon Boongoen for his support and suggestions.

References

Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD, Sallan
SE, Lander ES, Golub TR, Korsmeyer SJ (2002). “MLL Translocations Apecify a Distinct

http://users.aber.ac.uk/nii07/
http://users.aber.ac.uk/nii07/


32 LinkCluE: A MATLAB Package for Link-Based Cluster Ensembles

Gene Expression Profile that Distinguishes a Unique Leukemia.” Nature Genetics, 30(1),
41–47.

Ayad H, Kamel M (2003). “Finding Natural Clusters Using Multi-Clusterer Combiner Based
on Shared Nearest Neighbors.” In Proceedings of International Workshop on Multiple Clas-
sifier Systems, pp. 166–175. Springer-Verlag, Berlin.

Boulis C, Ostendorf M (2004). “Combining Multiple Clustering Systems.” In Proceedings of
European Conference on Principles and Practice of Knowledge Discovery in Databases, pp.
63–74. Springer-Verlag, New York.
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