8 research outputs found

    Biophysical Characteristics of Successful Oilseed Embryo Cryoprotection and Cryopreservation Using Vacuum Infiltration Vitrification: An Innovation in Plant Cell Preservation

    No full text
    Heterogeneity in morphology, physiology and cellular chemistry of plant tissues can compromise successful cryoprotection and cryopreservation. Cryoprotection is a function of exposure time × temperature × permeability for the chosen protectant and diffusion pathway length, as determined by specimen geometry, to provide sufficient dehydration whilst avoiding excessive chemical toxicity. We have developed an innovative method of vacuum infiltration vitrification (VIV) at 381 mm (15 in) Hg (50 kPa) that ensures the rapid (5 min), uniform permeation of Plant Vitrification Solution 2 (PVS2) cryoprotectant into plant embryos and their successful cryopreservation, as judged by regrowth in vitro. This method was validated on zygotic embryos/embryonic axes of three species (Carica papaya, Passiflora edulis and Laurus nobilis) up to 1.6 mg dry mass and 5.6 mm in length, with varying physiology (desiccation tolerances) and 80 °C variation in lipid thermal profiles, i.e., visco-elasticity properties, as determined by differential scanning calorimetry. Comparisons between the melting features of cryoprotected embryos and embryo regrowth indicated an optimal internal PVS2 concentration of about 60% of full strength. The physiological vigour of surviving embryos was directly related to the proportion of survivors. Compared with conventional vitrification, VIV-cryopreservation offered a ∼ 10-fold reduction in PVS2 exposure times, higher embryo viability and regrowth and greater effectiveness at two pre-treatment temperatures (0 °C and 25 °C). VIV-cryopreservation may form the basis of a generic, high throughput technology for the ex situ conservation of plant genetic resources, aiding food security and protection of species from diverse habitats and at risk of extinction

    The role of cold storage and seed source in the germination of three Mediterranean shrub species with contrasting dormancy types

    No full text
    The use of native species in ecological restoration is highly recommended but, in practice, it is often impaired by knowledge gaps in the germination ecology of suitable species. This study aimed to assess the role of storage conditions and seed source on the germination of three Mediterranean shrub species with contrasting types of dormancy. Ripe fruits were harvested at two or three distant locations in mainland Portugal. Seeds were subjected to three treatments consisting in different storage conditions: cold storage at low and high moisture conditions, plus a control. Five replicates of up to 30 seeds were placed under constant temperature conditions and germination was monitored weekly during 14 weeks. The effect of cold storage at high moisture on germination differed between the three species and seed source played a significant role in the germination of all three species. In the case of the species with dormancy, the observed differences in germination could reflect changes in the species' dormancy degree or sensitivity to dormancy breaking factors across their geographical range. In the case of Pistacia lentiscus (no dormancy), the results suggested a possible adaptation of the northern seed source to high moisture conditions. The observed differences between species agreed well with their dormancy types, and the seed source-related differences could be adaptive features, as they seemed related with local climate conditions

    The Eucalyptus terpene synthase gene family

    Get PDF
    Background: Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. Results: The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Conclusions: Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.Botany, Department ofScience, Faculty ofReviewedFacult

    Erzeugung von Krankheitszuständen durch Sproßpilze und Schimmelpilze

    No full text

    Temporal and spatial control of gene expression in horticultural crops

    No full text
    corecore