9,546 research outputs found

    Liverpool Telescope Technical Note 1: Telescope and IO:O Throughput

    Get PDF
    We measure the absolute photon efficiency of the Liverpool Telescope using observations of photometric standard stars and a throughput model of the IO:O instrument. Over a period of 1 year following mirror re-coating the telescope transmission is in the range 73-79% over 4000-10000 Angstroms. Transmission in the u'-band (~3500 Angstroms) is slightly lower at 65%. Immediately following mirror re-coating the throughput is shown to be consistent within 4% to predictions for two reflections from bare-aluminium-coated optics. The telescope throughput (two reflections) degrades at a rate ~0.0002 mag/day. Also presented are the effective wavelengths and widths for the u',g',r',i',z',B,V broad-band filters, taking into account all optical components of the system

    Demonstration of the Presence of the "Deleted" MIR122 Gene in HepG2 Cells

    Get PDF
    MicroRNA 122 (miR-122) is highly expressed in the liver where it influences diverse biological processes and pathways, including hepatitis C virus replication and metabolism of iron and cholesterol. It is processed from a long non-coding primary transcript (~7.5 kb) and the gene has two evolutionarily-conserved regions containing the pri-mir-122 promoter and pre-mir-122 hairpin region. Several groups reported that the widely-used hepatocytic cell line HepG2 had deficient expression of miR-122, previously ascribed to deletion of the pre-mir-122 stem-loop region. We aimed to characterise this deletion by direct sequencing of 6078 bp containing the pri-mir-122 promoter and pre-mir-122 stem-loop region in HepG2 and Huh-7, a control hepatocytic cell line reported to express miR-122, supported by sequence analysis of cloned genomic DNA. In contrast to previous findings, the entire sequence was present in both cell lines. Ten SNPs were heterozygous in HepG2 indicating that DNA was present in two copies. Three validation isolates of HepG2 were sequenced, showing identical genotype to the original in two, whereas the third was different. Investigation of promoter chromatin status by FAIRE showed that Huh-7 cells had 6.2 ± 0.19- and 2.7 ± 0.01- fold more accessible chromatin at the proximal (HNF4α-binding) and distal DR1 transcription factor sites, compared to HepG2 cells (p=0.03 and 0.001, respectively). This was substantiated by ENCODE genome annotations, which showed a DNAse I hypersensitive site in the pri-mir-122 promoter in Huh-7 that was absent in HepG2 cells. While the origin of the reported deletion is unclear, cell lines should be obtained from a reputable source and used at low passage number to avoid discrepant results. Deficiency of miR-122 expression in HepG2 cells may be related to a relative deficiency of accessible promoter chromatin in HepG2 versus Huh-7 cells

    MOPTOP: A multi-colour optimised optical polarimeter

    Get PDF
    We present the design and science case for the Liverpool Telescope's fourth-generation polarimeter; MOPTOP: a Multicolour OPTimised Optical Polarimeter which is optimised for sensitivity and bi-colour observations. We introduce an optimised polarimeter which is as far as possible limited only by the photon counting efficiency of the detectors. Using a combination of CMOS cameras, a continuously rotating half-wave plate and a wire grid polarising beamsplitter, we predict we can accurately measure the polarisation of sources to ∼ 1% at ∼19th magnitude in 10 minutes on a 2 metre telescope. For brighter sources we anticipate much low systematics (0.1%) than our current polarimeter. The design also gives the ability to measure polarization and photometric variability on timescales as short as a few seconds. Overall the instrument will allow accurate measurements of the intra-nightly variability of the polarisation of sources such as gamma-ray bursts and blazars (AGN orientated with the jet pointing toward the observer), allowing the constraint of magnetic field models revealing more information about the formation, ejection and collimation of jets. © 2016 SPIE

    A proposed testbed for detector tomography

    Full text link
    Measurement is the only part of a general quantum system that has yet to be characterized experimentally in a complete manner. Detector tomography provides a procedure for doing just this; an arbitrary measurement device can be fully characterized, and thus calibrated, in a systematic way without access to its components or its design. The result is a reconstructed POVM containing the measurement operators associated with each measurement outcome. We consider two detectors, a single-photon detector and a photon-number counter, and propose an easily realized experimental apparatus to perform detector tomography on them. We also present a method of visualizing the resulting measurement operators.Comment: 9 pages, 4 figure

    Using dummy and pseudo-dummy amplifiers to correct for common mode CCD noise

    Get PDF
    Some modern CCD designs provide a dummy readout amplifier that is designed to be operated with the same clock and bias signals as the true amplifier in order to provide a measurement of clock induced and other common-mode noise signals in the true amplifier readout. In general the dummy output signal is subtracted electronically from the true output signal in a differential input preamplifier before digitization. Here we report on an alternative approach where both signals are digitized and the subtraction done in software. We present the results of testing this method of operation using the ARC SDSU generation III CCD controllers and an e2v CCD231 device and find it works well, allowing a noise figure of ~ 2:2 electrons to be reached in the presence of significantly higher (~ 6 electrons) pickup noise. In addition we test the effectiveness of using unused (but still genuine) readout amplifiers on the detector to provide a pseudo-dummy output, which we also find effective in cancelling common mode noise. This provides the option of implementing noise reduction on CCDs that are not equipped with dummy outputs at the expense of overall readout speed

    Automated Spectral Reduction Pipelines

    Get PDF
    The Liverpool Telescope automated spectral data reduction pipelines perform both removal of instrumental signatures and provide wavelength calibrated data products promptly after observation. Unique science drivers for each of three instruments led to novel hardware solutions which required reassessment of some of the conventional CCD reduction recipes. For example, we describe the derivation of bias and dark corrections on detectors with neither overscan or shutter. In the context of spectroscopy we compare the quality of at fielding resulting from different algorithmic combinations of dispersed and non-dispersed sky and lamp flats in the case of spectra suffering from 2D spatial distortions. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    RINGO2: an EMCCD-based polarimeter for GRB followup

    Get PDF
    We describe the design and construction of a new novel optical polarimeter (RINGO2) for the Liverpool Telescope. The instrument is designed for rapid (< 3 minute) followup observations of Gamma Ray Bursts in order to measure the early time polarization and time evolution on timescales of ~ 1 - 10000 seconds. By using a fast rotating Polaroid whose rotation is synchronized to control the readout of an electron multiplying CCD eight times per revolution, we can rebin our data in the time domain after acquisition with little noise penalty, thereby allowing us to explore the polarization evolution of these rapidly variable objects for the first time. © (2010) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only

    Early time optical polarization of GRB Afterglows: GRB 060418 and GRB 090102

    Get PDF
    RINGO on the Liverpool Telescope has now measured the optical polarization of GRB 060418 (where a 2 sigma upper limit of P<8% was determined) and GRB 090102 (when a detection of P = 10 +/-1 % was made). We discuss the implications of these observations for the various competing models of GRB jet magnetization and describe a possible unified model that can explain both measurements

    RINGO3: a multi-colour fast response polarimeter

    Get PDF
    GRB jets contain rapidly moving electrons which will spiral around magnetic field lines. This causes them to emit polarized synchrotron emission. We have built a series of polarimeters (RINGO and RINGO2) to investigate this by measuring the polarization of optical light from GRBs at a certain single wavelength. The instruments are mounted on the Liverpool Telescope, which is a fully robotic (i.e. unmanned) telescope on La Palma which reacts to triggers from satellites such as the NASA SWIFT mission. This has had great success, with the first ever detections of early time optical polarization being made. In addition, the first measurements of the change in optical polarization from a GRB as the jet expands have recently been obtained. In this paper we describe the design and construction of RINGO3. This will be a multi-colour instrument that can observe simultaneously at three wavelengths. By doing so we will be able to unambiguously identify where in the burst the polarized emission is coming from. This will allow us to distinguish between three possibilities: (1) Magnetic instabilities generated in the shock front, (2) Line of sight effects and (3) Large-scale magnetic fields present throughout the relativistic outflow. The instrument design combines a rapidly rotating polaroid, specially designed polarization insensitive dichroic mirrors and three electron multiplying CCD cameras to provide simultaneous wavelength coverage with a time resolution of 1 second

    Characterization of a dual-beam, dual-camera optical imaging polarimeter

    Get PDF
    Polarization plays an important role in various time-domain astrophysics to understand the magnetic fields, geometry, and environments of spatially unresolved variable sources. In this paper we present the results of laboratory and on-sky testing of a novel dual-beam, dual-camera optical imaging polarimeter (MOPTOP) exploiting high sensitivity, low-noise CMOS technology and designed to monitor variable and transient sources with low systematic errors and high sensitivity. We present a data reduction algorithm that corrects for sensitivity variations between the cameras on a source-by-source basis. Using our data reduction algorithm, we show that our dual-beam, dual-camera technique delivers the benefits of low and stable instrumental polarization (<0.05<0.05\% for lab data and <0.25<0.25\% for on sky data) and high throughput while avoiding the additional sky brightness and image overlap problems associated with dual-beam, single-camera polarimeters
    • …
    corecore