46 research outputs found
The synthetic antimicrobial peptide 19-2.5 attenuates septic cardiomyopathy and prevents down-regulation of SERCA2 in polymicrobial sepsis
LM has received grants by the Faculty of Medicine at the RWTH Aachen University (START 15/14 and
START 46/16) and the Deutsche Forschungsgemeinschaft (DFG, MA 7082/1–1). This work was supported by
the Immunohistochemistry and Confocal Microscopy Unit, a core facility of the Interdisciplinary Centre for
Clinical Research (IZKF) Aachen, within the Faculty of Medicine at the RWTH Aachen University and the
RWTH centralized Biomaterial Database (RWTH cBMB) of the University Hospital RWTH Aachen. We are
very grateful to Antons Martincuks M.Sc. and Professor Gerhard Müller-Newen for live-cell imaging. This work
was supported, in part, by the University of Turin (ex-60% 2015A and B) and by the William Harvey Research
Foundation and forms part of the research themes contributing to the translational research portfolio of Barts
and the London Cardiovascular Biomedical Research Unit that is supported and funded by the National Institute
for Health Research. This work also contributes to the Organ Protection research theme of the Barts Centre for
Trauma Sciences supported by the Barts and The London Charity (Award 753/1722)
Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart
Heart failure (HF) is characterized by molecular and cellular defects which jointly contribute to decreased cardiac pump function. During the development of the initial cardiac damage which leads to HF, adaptive responses activate physiological countermeasures to overcome depressed cardiac function and to maintain blood supply to vital organs in demand of nutrients. However, during the chronic course of most HF syndromes, these compensatory mechanisms are sustained beyond months and contribute to progressive maladaptive remodeling of the heart which is associated with a worse outcome. Of pathophysiological significance are mechanisms which directly control cardiac contractile function including ion- and receptor-mediated intracellular signaling pathways. Importantly, signaling cascades of stress adaptation such as intracellular calcium (Ca2+) and 3′-5′-cyclic adenosine monophosphate (cAMP) become dysregulated in HF directly contributing to adverse cardiac remodeling and depression of systolic and diastolic function. Here, we provide an update about Ca2+ and cAMP dependent signaling changes in HF, how these changes affect cardiac function, and novel therapeutic strategies which directly address the signaling defects
Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study
Background: Heart failure is a final common pathway or descriptor for various cardiac pathologies. It is associated with
sudden cardiac death, which is frequently caused by ventricular arrhythmias. Electrophysiological remodeling, intercellular
uncoupling, fibrosis and autonomic imbalance have been identified as major arrhythmogenic factors in heart failure
etiology and progression.
Objective: In this study we investigate in silico the role of electrophysiological and structural heart failure remodeling on the
modulation of key elements of the arrhythmogenic substrate, i.e., electrophysiological gradients and abnormal impulse
propagation.
Methods: Two different mathematical models of the human ventricular action potential were used to formulate models of
the failing ventricular myocyte. This provided the basis for simulations of the electrical activity within a transmural
ventricular strand. Our main goal was to elucidate the roles of electrophysiological and structural remodeling in setting the
stage for malignant life-threatening arrhythmias.
Results: Simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the
human failing ventricle modulate the dispersion of action potential duration and repolarization time. Specifically, selective
heterogeneous remodeling of expression levels for the Na+
/Ca2+ exchanger and SERCA pump decrease these
heterogeneities. In contrast, fibroblast proliferation and cellular uncoupling both strongly increase repolarization
heterogeneities. Conduction velocity and the safety factor for conduction are also reduced by the progressive structural
remodeling during heart failure.
Conclusion: An extensive literature now establishes that in human ventricle, as heart failure progresses, gradients for
repolarization are changed significantly by protein specific electrophysiological remodeling (either homogeneous or
heterogeneous). Our simulations illustrate and provide new insights into this. Furthermore, enhanced fibrosis in failing
hearts, as well as reduced intercellular coupling, combine to increase electrophysiological gradients and reduce electrical
propagation. In combination these changes set the stage for arrhythmias.This work was partially supported by (i) the "VI Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica" from the Ministerio de Economia y Competitividad of Spain (grant number TIN2012-37546-C03-01) and the European Commission (European Regional Development Funds - ERDF - FEDER), (ii) the Direccion General de Politica Cientifica de la Generalitat Valenciana (grant number GV/2013/119), and (iii) Programa Prometeo (PROMETEO/2012/030) de la Conselleria d'Educacio Formacio I Ocupacio, Generalitat Valenciana. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Gómez García, JF.; Cardona, K.; Romero Pérez, L.; Ferrero De Loma-Osorio, JM.; Trénor Gomis, BA. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE. 9(9). https://doi.org/10.1371/journal.pone.0106602S9