28 research outputs found

    Dynamical density functional theory for orientable colloids including inertia and hydrodynamic interactions

    Get PDF
    Over the last few decades, classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become powerful tools in the study of colloidal fluids. Recently, previous DDFTs for spherically-symmetric particles have been generalised to take into account both inertia and hydrodynamic interactions, two effects which strongly influence non-equilibrium properties. The present work further generalises this framework to systems of anisotropic particles. Starting from the Liouville equation and utilising Zwanzig's projection-operator techniques, we derive the kinetic equation for the Brownian particle distribution function, and by averaging over all but one particle, a DDFT equation is obtained. Whilst this equation has some similarities with DDFTs for spherically-symmetric colloids, it involves a translational-rotational coupling which affects the diffusivity of the (asymmetric) particles. We further show that, in the overdamped (high friction) limit, the DDFT is considerably simplified and is in agreement with a previous DDFT for colloids with arbitrary shape particles.Comment: dynamical density functional theory ; colloidal fluids ; arbitrary-shape particles ; orientable colloid

    Kinetics of the coefficient of friction of elastomers

    No full text
    We study theoretically and numerically the kinetics of the coefficient of friction of an elastomer due to abrupt changes of sliding velocity. Numerical simulations reveal the same qualitative behavior which has been observed experimentally on different classes of materials: the coefficient of friction first jumps and then relaxes to a new stationary value. The elastomer is modeled as a simple Kelvin body and the surface as a self-affine fractal with a Hurst exponent in the range from 0 to 1. Parameters of the jump of the coefficient of friction and the relaxation time are determined as functions of material and loading parameters. Depending on velocity and the Hurst exponent, relaxation of friction with characteristic length or characteristic time is observed

    Deficiency of 6B11+invariant NK T-cells in celiac disease

    No full text
    The definitive version can be found at www.springerlink.comImmunoregulatory NK T-cells are deficient in certain autoimmune diseases. The purpose of this study was to investigate any deficiency of immunoregulatory NK T-cells in celiac disease. NK T-cells were identified by flow cytometry with 6B11 and Vα24 markers in blood from 18 normal and 12 celiac subjects. Blood mononuclear cells were stimulated with anti-CD3/CD28 antibodies and intracellular cytokines assessed at 4 h in seven normal and eight celiac subjects. Vα24/GAPDH mRNA was quantitated in duodenal biopsies by real time PCR in 17 control and 13 celiac subjects. NK T-cells in celiac subjects were reduced to 30% of those in normal subjects. Intracellular IL-4, IL-10 and IL-13 increased significantly by 33–41% in normal subjects, but did not change in celiac subjects. Vα24/GAPDH mRNA from celiac subjects was reduced to 5% of levels in control subjects. We conclude that immunoregulatory NK T-cells are deficient in celiac disease.Randall H. Grose, Fiona M. Thompson and Adrian G. Cummin

    Gravitational spreading causes en-echelon diking along a rift zone of Madeira Archipelago: an experimental approach and implications for magma transport

    No full text
    Many volcanic rift zones show dikes that are oriented oblique rather than parallel to the morphological ridge axis. We have evidence that gravitational spreading of volcanoes may adjust the orientation of ascending dikes within the crust and segment them into en-echelon arrays. This is exemplified by the Desertas Islands which are the surface expression of a 60 km long submarine ridge in southeastern Madeira Archipelago. The azimuth of the main dike swarm (average = 145°) deviates significantly from that of the morphological ridge (163°) defining an en-echelon type arrangement. We propose that this deviation results from the gravitational stress field of the overlapping volcanic edifices, reinforced by volcano spreading on weak substratum. We tested our thesis experimentally by mounting analogue sand piles onto a sand and viscous PDMS substratum. Gravitational spreading of this setup produced en-echelon fractures that clearly mimic the dike orientations observed, with a deviation of 10°–32° between the model’s ridge axis and that of the main fracture swarm. Using simple numerical models of segmented dike intrusion we found systematic changes of displacement vectors with depth and also with distance to the rift zone resulting in a complex displacement field. We propose that at depth beneath the Desertas Islands, magmas ascended along the ridge to produce the overall present-day morphology. Above the oceanic basement, gravitational stress and volcano spreading adjusted the principal stress axes’ orientations causing counterclockwise dike rotation of up to 40°. This effect limits the possible extent of lateral dike propagation at shallow levels and may have strong control on rift evolution and flank stability. The results highlight the importance of gravitational stress as a major, if not dominant factor in the evolution of volcanic rift zones
    corecore