16 research outputs found

    Population genomics of marine zooplankton

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway)

    Dispersal of the Ponto-Caspian amphipod Echinogammarus ischnus: Invasion waves from the Pleistocene to the present

    No full text
    The geographical range of the amphipod crustacean Echinogammarus ischnus has expanded over the past century from the Ponto-Caspian region to Western Europe, the Baltic Sea, and the Great Lakes of North America. The present study explores the phylogeographic patterns of this amphipod across its current distribution, based on an examination of nucleotide diversity in the mitochondrial cytochrome c oxidase subunit I (COI) gene. Marked genetic divergence exists among populations of E. ischnus from the Black and Caspian Seas, as well as those from the drainage system of the Black Sea. This divergence suggests the prolonged geographic isolation of these native populations, reflecting the limited dispersal capability of E. ischnus. By contrast, invading populations are characterized by a lack of genetic variation; a single mitochondrial genotype of Black Sea origin has colonized sites from the Rhine River to North America. The dispersal pattern in E. ischnus is very similar to that in the Ponto-Caspian cladoceran Cercopagis pengoi. Despite their contrasting life history strategies, these invading species followed the same route of invasion from the northern Black Sea to the Baltic Sea region, and subsequently to North America

    Combinatorial laser synthesis of biomaterial thin films: selection and processing for medical applications.

    No full text
    A new generation of implantable biomaterials should possess smart surfaces and interfaces able to modulate cellular behaviour and directly address specific clinical issues. This chapter provides an overview of recent advances in the field of laser-based combinatorial synthesis of thin biomaterial films with gradient of composition on solid substrates for medical applications. Laser processing methods and selected applications for tissue engineering and regenerative medicine are reviewed in sequel
    corecore