433 research outputs found

    Π’Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ комплСксного ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° клиничСских Π΄Π°Π½Π½Ρ‹Ρ…

    Get PDF
    The paper presents the system for intelligent analysis of clinical information. Authors describe methods implemented in the system for clinical information retrieval, intelligent diagnostics of chronic diseases, patient’s features importance and for detection of hidden dependencies between features. Results of the experimental evaluation of these methods are also presented.Background: Healthcare facilities generate a large flow of both structured and unstructured data which contain important information about patients. Test results are usually retained as structured data but some data is retained in the form of natural language texts (medical history, the results of physical examination, and the results of other examinations, such as ultrasound, ECG or X-ray studies). Many tasks arising in clinical practice can be automated applying methods for intelligent analysis of accumulated structured array and unstructured data that leads to improvement of the healthcare quality.Aims: the creation of the complex system for intelligent data analysis in the multi-disciplinary pediatric center.Materials and methods: Authors propose methods for information extraction from clinical texts in Russian. The methods are carried out on the basis of deep linguistic analysis. They retrieve terms of diseases, symptoms, areas of the body and drugs. The methods can recognize additional attributes such as Β«negationΒ» (indicates that the disease is absent), Β«no patientΒ» (indicates that the disease refers to the patient’s family member, but not to the patient), Β«severity of illnessΒ», Β«disease courseΒ», Β«body region to which the disease refersΒ». Authors use a set of hand-drawn templates and various techniques based on machine learning to retrieve information using a medical thesaurus. The extracted information is used to solve the problem of automatic diagnosis of chronic diseases. A machine learning method for classification of patients with similar nosology and the method for determining the most informative patients’ features are also proposed.Results: Authors have processed anonymized health records from the pediatric center to estimate the proposed methods. The results show the applicability of the information extracted from the texts for solving practical problems. The records of patients with allergic, glomerular and rheumatic diseases were used for experimental assessment of the method of automatic diagnostic. Authors have also determined the most appropriate machine learning methods for classification of patients for each group of diseases, as well as the most informative disease signs. It has been found that using additional information extracted from clinical texts, together with structured data helps to improve the quality of diagnosis of chronic diseases. Authors have also obtained pattern combinations of signs of diseases.Conclusions: The proposed methods have been implemented in the intelligent data processing system for a multidisciplinary pediatric center. The experimental results show the availability of the system to improve the quality of pediatric healthcare. ОбоснованиС. ΠœΠ΅Π΄ΠΈΡ†ΠΈΠ½ΡΠΊΠΈΠ΅ учрСТдСния Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‚ большой ΠΏΠΎΡ‚ΠΎΠΊ ΠΊΠ°ΠΊ структурированных, Ρ‚Π°ΠΊ ΠΈ нСструктурированных Π΄Π°Π½Π½Ρ‹Ρ…, содСрТащих Π²Π°ΠΆΠ½ΡƒΡŽ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ ΠΎ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°Ρ…. Π’ структурированном Π²ΠΈΠ΄Π΅, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, хранятся Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·ΠΎΠ², ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΏΠΎΠ΄Π°Π²Π»ΡΡŽΡ‰Π΅Π΅ количСство Π΄Π°Π½Π½Ρ‹Ρ… хранится Π² нСструктурированной Ρ„ΠΎΡ€ΠΌΠ΅ Π² Π²ΠΈΠ΄Π΅ тСкстов Π½Π° СстСствСнном языкС (Π°Π½Π°ΠΌΠ½Π΅Π·Ρ‹, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ осмотров, описания Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² обслСдований, Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ Π£Π—Π˜, Π­ΠšΠ“, рСнтгСновских исслСдований ΠΈ Π΄Ρ€.). Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½Ρ‹Ρ… массивов структурированных ΠΈ нСструктурированных Π΄Π°Π½Π½Ρ‹Ρ…, ΠΌΠΎΠΆΠ½ΠΎ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰ΠΈΡ… Π² клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΈ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ качСство мСдицинской ΠΏΠΎΠΌΠΎΡ‰ΠΈ.ЦСль исслСдования: созданиС комплСксной систСмы ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΌΠ½ΠΎΠ³ΠΎΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΌ пСдиатричСском Ρ†Π΅Π½Ρ‚Ρ€Π΅.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π˜Π·Π²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈΠ· клиничСских тСкстов Π½Π° русском языкС осущСствляСтся Π½Π° основС ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ лингвистичСского Π°Π½Π°Π»ΠΈΠ·Π°. Π˜Π·Π²Π»Π΅ΠΊΠ°ΡŽΡ‚ΡΡ упоминания Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, симптомов, областСй Ρ‚Π΅Π»Π°, лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ². Π’ тСкстС Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°ΡΠΏΠΎΠ·Π½Π°ΡŽΡ‚ΡΡ Π°Ρ‚Ρ€ΠΈΠ±ΡƒΡ‚Ρ‹ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ: Β«ΠΎΡ‚Ρ€ΠΈΡ†Π°Π½ΠΈΠ΅Β» (ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ отсутствуСт), Β«Π½Π΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Β» (ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ относится Π½Π΅ ΠΊ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρƒ, Π° ΠΊ Π΅Π³ΠΎ родствСннику), Β«Ρ‚ΡΠΆΠ΅ΡΡ‚ΡŒ заболСвания», Β«Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ заболСвания», Β«ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Ρ‚Π΅Π»Π°, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ относится Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅Β». Для извлСчСния ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ мСдицинскиС тСзаурусы, Π½Π°Π±ΠΎΡ€ Π²Ρ€ΡƒΡ‡Π½ΡƒΡŽ составлСнных шаблонов, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π½Π° основС машинного обучСния. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΈΠ· тСкстов Π΄Π°Π½Π½Ρ‹Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ автоматичСской диагностики хроничСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π½Π° основС машинного обучСния для классификации ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² со схоТими нозологиями, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ для опрСдСлСния Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ².Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π½Π° ΠΎΠ±Π΅Π·Π»ΠΈΡ‡Π΅Π½Π½Ρ‹Ρ… историях Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² пСдиатричСского Ρ†Π΅Π½Ρ‚Ρ€Π°. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° качСства Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² извлСчСния ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈΠ· клиничСских тСкстов Π½Π° русском языкС. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° автоматичСской диагностики Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с аллСргичСскими заболСваниями ΠΈ Π±ΠΎΠ»Π΅Π·Π½Ρ‹ΠΌΠΈ ΠΎΡ€Π³Π°Π½ΠΎΠ² дыхания, нСфрологичСскими ΠΈ рСвматичСскими заболСваниями. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ подходящиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ машинного обучСния для классификации ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ. ИспользованиС Π΄Π°Π½Π½Ρ‹Ρ…, ΠΈΠ·Π²Π»Π΅Ρ‡Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· клиничСских тСкстов совмСстно со структурированными Π΄Π°Π½Π½Ρ‹ΠΌΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ качСство диагностики хроничСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с использованиСм лишь доступных структурированных Π΄Π°Π½Π½Ρ‹Ρ…. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΡˆΠ°Π±Π»ΠΎΠ½Π½Ρ‹Π΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ² Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π±Ρ‹Π»ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ‹ Π² систСмС ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΌΠ½ΠΎΠ³ΠΎΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΌ пСдиатричСском Ρ†Π΅Π½Ρ‚Ρ€Π΅. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎ пСрспСктивности использования систСмы для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ качСства мСдицинской ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌ дСтской возрастной ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ

    The Glasgow Benefit Inventory: a systematic review of the use and value of an otorhinolaryngological generic patient-recorded outcome measure

    Get PDF
    The Glasgow Benefit Inventory (GBI) is a validated, generic patient-recorded outcome measure widely used in otolaryngology to report change in quality of life post-intervention.To date, no systematic review has made (i) a quality assessment of reporting of Glasgow Benefit Inventory outcomes; (ii) a comparison between Glasgow Benefit Inventory outcomes for different interventions and objectives; (iii) an evaluation of subscales in describing the area of benefit; (iv) commented on its value in clinical practice and research.Systematic review.'Glasgow Benefit Inventory' and 'GBI' were used as keywords to search for published, unpublished and ongoing trials in PubMed, EMBASE, CINAHL and Google in addition to an ISI citation search for the original validating Glasgow Benefit Inventory paper between 1996 and January 2015.Papers were assessed for study type and quality graded by a predesigned scale, by two authors independently. Papers with sufficient quality Glasgow Benefit Inventory data were identified for statistical comparisons. Papers with 50% and gave sufficient Glasgow Benefit Inventory total and subscales for meta-analysis. For five of the 11 operation categories (vestibular schwannoma, tonsillectomy, cochlear implant, middle ear implant and stapes surgery) that were most likely to have a single clear clinical objective, score data had low-to-moderate heterogeneity. The value in the Glasgow Benefit Inventory having both positive and negative scores was shown by an overall negative score for the management of vestibular schwannoma. The other six operations gave considerable heterogeneity with rhinoplasty and septoplasty giving the greatest percentages (98% and 99%) most likely because of the considerable variations in patient selection. The data from these operations should not be used for comparative purposes. Five papers also reported the number of patients that had no or negative benefit, a potentially a more clinically useful outcome to report. Glasgow Benefit Inventory subscores for tonsillectomy were significantly different from ear surgery suggesting different areas of benefitThe Glasgow Benefit Inventory has been shown to differentiate the benefit between surgical and medical otolaryngology interventions as well as 'reassurance'. Reporting benefit as percentages with negative, no and positive benefit would enable better comparisons between different interventions with varying objectives and pathology. This could also allow easier evaluation of factors that predict benefit. Meta-analysis data are now available for comparison purposes for vestibular schwannoma, tonsillectomy, cochlear implant, middle ear implant and stapes surgery. Fuller report of the Glasgow Benefit Inventory outcomes for non-surgical otolaryngology interventions is encouraged

    Measurement of the Dalitz plot slope parameters for K- -> pi0 pi0 pi- decay using ISTRA+ detector

    Get PDF
    The Dalitz plot slope parameters g, h and k for the K- -> pi0 pi0 pi- decay have been measured using in-flight decays detected with the ISTRA+ setup operating in the 25 GeV negative secondary beam of the U-70 PS. About 252 K events with four-momenta measured for the pi- and four involved photons were used for the analysis. The values obtained g=0.627+/-0.004(stat)+/-0.010(syst), h=0.046+/-0.004(stat)+/-0.012(syst), k=0.001+/-0.001(stat)+/-0.002(syst) are consistent with the world averages dominated by K+ data, but have significantly smaller errors.Comment: LaTeX, 10 pages, 8 eps-figures, update of IHEP 2002-1

    Exact asymptotic form of the exchange interactions between shallow centers in doped semiconductors

    Full text link
    The method developed in [L. P. Gor'kov and L. P. Pitaevskii, Sov. Phys. Dokl. 8, 788 (1964); C. Herring and M. Flicker, Phys. Rev. 134, A362 (1964)] to calculate the asymptotic form of exchange interactions between hydrogen atoms in the ground state is extended to excited states. The approach is then applied to shallow centers in semiconductors. The problem of the asymptotic dependence of the exchange interactions in semiconductors is complicated by the multiple degeneracy of the ground state of an impurity (donor or acceptor) center in valley or band indices, crystalline anisotropy and strong spin-orbital interactions, especially for acceptor centers in III-V and II-VI groups semiconductors. Properties of two coupled centers in the dilute limit can be accessed experimentally, and the knowledge of the exact asymptotic expressions, in addition to being of fundamental interest, must be very helpful for numerical calculations and for interpolation of exchange forces in the case of intermediate concentrations. Our main conclusion concerns the sign of the magnetic interaction -- the ground state of a pair is always non-magnetic. Behavior of the exchange interactions in applied magnetic fields is also discussed

    High statistics study of the K- -> pi0 e- nu decay

    Get PDF
    The decay K- -> pi0 e- nu has been studied using in-flight decays detected with the "ISTRA+" spectrometer working at the 25 GeV negative secondary beam of the U-70 PS. About 550K events were used for the analysis. The lambda+ parameter of the vector form-factor has been measured: lambda+ = 0.0286 +- 0.0008 (stat) +- 0.0006(syst). The limits on the possible tensor and scalar couplings have been obtained: f(T)/f+(0)=0.021 +0.064 -0.075 (stat) +- 0.026(syst) ; f(S)/f+(0)=0.002 +0.020 -0.022 (stat) +- 0.003(syst)Comment: LaTeX-2e, epsfig.sty, 10 pages, 7 figures in EPS forma

    Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

    Get PDF
    We present a determination of the gluon polarization Delta G/G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6-LiD target. The helicity asymmetry for the selected events is = 0.002 +- 0.019(stat.) +- 0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3 (GeV}/c)^2.Comment: 10 pages, 3 figure

    Measurement of the Spin Structure of the Deuteron in the DIS Region

    Full text link
    We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.Comment: 10 pages, 6 figures, subm. to PLB, revised: author list, Fig. 4, details adde
    • …
    corecore