433 research outputs found
Π’Π΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π°Π½Π½ΡΡ
The paper presents the system for intelligent analysis of clinical information. Authors describe methods implemented in the system for clinical information retrieval, intelligent diagnostics of chronic diseases, patientβs features importance and for detection of hidden dependencies between features. Results of the experimental evaluation of these methods are also presented.Background: Healthcare facilities generate a large flow of both structured and unstructured data which contain important information about patients. Test results are usually retained as structured data but some data is retained in the form of natural language texts (medical history, the results of physical examination, and the results of other examinations, such as ultrasound, ECG or X-ray studies). Many tasks arising in clinical practice can be automated applying methods for intelligent analysis of accumulated structured array and unstructured data that leads to improvement of the healthcare quality.Aims: the creation of the complex system for intelligent data analysis in the multi-disciplinary pediatric center.Materials and methods: Authors propose methods for information extraction from clinical texts in Russian. The methods are carried out on the basis of deep linguistic analysis. They retrieve terms of diseases, symptoms, areas of the body and drugs. The methods can recognize additional attributes such as Β«negationΒ» (indicates that the disease is absent), Β«no patientΒ» (indicates that the disease refers to the patientβs family member, but not to the patient), Β«severity of illnessΒ», Β«disease courseΒ», Β«body region to which the disease refersΒ». Authors use a set of hand-drawn templates and various techniques based on machine learning to retrieve information using a medical thesaurus. The extracted information is used to solve the problem of automatic diagnosis of chronic diseases. A machine learning method for classification of patients with similar nosology and the method for determining the most informative patientsβ features are also proposed.Results: Authors have processed anonymized health records from the pediatric center to estimate the proposed methods. The results show the applicability of the information extracted from the texts for solving practical problems. The records of patients with allergic, glomerular and rheumatic diseases were used for experimental assessment of the method of automatic diagnostic. Authors have also determined the most appropriate machine learning methods for classification of patients for each group of diseases, as well as the most informative disease signs. It has been found that using additional information extracted from clinical texts, together with structured data helps to improve the quality of diagnosis of chronic diseases. Authors have also obtained pattern combinations of signs of diseases.Conclusions: The proposed methods have been implemented in the intelligent data processing system for a multidisciplinary pediatric center. The experimental results show the availability of the system to improve the quality of pediatric healthcare.Β ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠ΅. ΠΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΠ΅ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ Π³Π΅Π½Π΅ΡΠΈΡΡΡΡ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠΎΡΠΎΠΊ ΠΊΠ°ΠΊ ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
, ΡΠ°ΠΊ ΠΈ Π½Π΅ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
Π²Π°ΠΆΠ½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°Ρ
. Π ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Ρ
ΡΠ°Π½ΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π°Π½Π°Π»ΠΈΠ·ΠΎΠ², ΠΎΠ΄Π½Π°ΠΊΠΎ ΠΏΠΎΠ΄Π°Π²Π»ΡΡΡΠ΅Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π΄Π°Π½Π½ΡΡ
Ρ
ΡΠ°Π½ΠΈΡΡΡ Π² Π½Π΅ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ Π² Π²ΠΈΠ΄Π΅ ΡΠ΅ΠΊΡΡΠΎΠ² Π½Π° Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΡΠ·ΡΠΊΠ΅ (Π°Π½Π°ΠΌΠ½Π΅Π·Ρ, ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎΡΠΌΠΎΡΡΠΎΠ², ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ Π£ΠΠ, ΠΠΠ, ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈ Π΄Ρ.). ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½ΡΡ
ΠΌΠ°ΡΡΠΈΠ²ΠΎΠ² ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΈ Π½Π΅ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
, ΠΌΠΎΠΆΠ½ΠΎ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΈΡ
Π·Π°Π΄Π°Ρ, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡΠΈΡ
Π² ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΈ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ ΠΏΠΎΠΌΠΎΡΠΈ.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ:Β ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΄Π°Π½Π½ΡΡ
Π² ΠΌΠ½ΠΎΠ³ΠΎΠΏΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠΌ ΠΏΠ΅Π΄ΠΈΠ°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ΅Π½ΡΡΠ΅.ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΈΠ· ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΊΡΡΠΎΠ² Π½Π° ΡΡΡΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ΅ ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ Π»ΠΈΠ½Π³Π²ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. ΠΠ·Π²Π»Π΅ΠΊΠ°ΡΡΡΡ ΡΠΏΠΎΠΌΠΈΠ½Π°Π½ΠΈΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, ΡΠΈΠΌΠΏΡΠΎΠΌΠΎΠ², ΠΎΠ±Π»Π°ΡΡΠ΅ΠΉ ΡΠ΅Π»Π°, Π»Π΅ΠΊΠ°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ². Π ΡΠ΅ΠΊΡΡΠ΅ ΡΠ°ΠΊΠΆΠ΅ ΡΠ°ΡΠΏΠΎΠ·Π½Π°ΡΡΡΡ Π°ΡΡΠΈΠ±ΡΡΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ: Β«ΠΎΡΡΠΈΡΠ°Π½ΠΈΠ΅Β» (ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΡΠΎ, ΡΡΠΎ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ ΠΎΡΡΡΡΡΡΠ²ΡΠ΅Ρ), Β«Π½Π΅ ΠΏΠ°ΡΠΈΠ΅Π½ΡΒ» (ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π° ΡΠΎ, ΡΡΠΎ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ Π½Π΅ ΠΊ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ, Π° ΠΊ Π΅Π³ΠΎ ΡΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΠΈΠΊΡ), Β«ΡΡΠΆΠ΅ΡΡΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΒ», Β«ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΒ», Β«ΠΎΠ±Π»Π°ΡΡΡ ΡΠ΅Π»Π°, ΠΊ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅Β». ΠΠ»Ρ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΈΠ΅ ΡΠ΅Π·Π°ΡΡΡΡΡ, Π½Π°Π±ΠΎΡ Π²ΡΡΡΠ½ΡΡ ΡΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΡ
ΡΠ°Π±Π»ΠΎΠ½ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΈΠ· ΡΠ΅ΠΊΡΡΠΎΠ² Π΄Π°Π½Π½ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅ΡΠΎΠ΄ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΡΠΎ ΡΡ
ΠΎΠΆΠΈΠΌΠΈ Π½ΠΎΠ·ΠΎΠ»ΠΎΠ³ΠΈΡΠΌΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΌΠ΅ΡΠΎΠ΄ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΡΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ².Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ Π½Π° ΠΎΠ±Π΅Π·Π»ΠΈΡΠ΅Π½Π½ΡΡ
ΠΈΡΡΠΎΡΠΈΡΡ
Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΏΠ΅Π΄ΠΈΠ°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π½ΡΡΠ°. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΎΡΠ΅Π½ΠΊΠ° ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΈΠ· ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΊΡΡΠΎΠ² Π½Π° ΡΡΡΡΠΊΠΎΠΌ ΡΠ·ΡΠΊΠ΅. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΠΎΡΠ΅Π½ΠΊΠ° ΠΌΠ΅ΡΠΎΠ΄Π° Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π½Π° Π΄Π°Π½Π½ΡΡ
ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π°Π»Π»Π΅ΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ ΠΈ Π±ΠΎΠ»Π΅Π·Π½ΡΠΌΠΈ ΠΎΡΠ³Π°Π½ΠΎΠ² Π΄ΡΡ
Π°Π½ΠΈΡ, Π½Π΅ΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΈ ΡΠ΅Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΡΡΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π³ΡΡΠΏΠΏΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΡΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΈ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π°Π½Π½ΡΡ
, ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½Π½ΡΡ
ΠΈΠ· ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ΅ΠΊΡΡΠΎΠ² ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎ ΡΠΎ ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Ρ
ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π»ΠΈΡΡ Π΄ΠΎΡΡΡΠΏΠ½ΡΡ
ΡΡΡΡΠΊΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
. ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΡΠ°ΠΊΠΆΠ΅ ΡΠ°Π±Π»ΠΎΠ½Π½ΡΠ΅ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ Π±ΡΠ»ΠΈ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Ρ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΈΠ½ΡΠ΅Π»Π»Π΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π΄Π°Π½Π½ΡΡ
Π² ΠΌΠ½ΠΎΠ³ΠΎΠΏΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠΌ ΠΏΠ΅Π΄ΠΈΠ°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ΅Π½ΡΡΠ΅. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΡΡΠ΅ΠΌΡ Π΄Π»Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ ΠΏΠΎΠΌΠΎΡΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌ Π΄Π΅ΡΡΠΊΠΎΠΉ Π²ΠΎΠ·ΡΠ°ΡΡΠ½ΠΎΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ
The Glasgow Beneο¬t Inventory: a systematic review of the use and value of an otorhinolaryngological generic patient-recorded outcome measure
The Glasgow Benefit Inventory (GBI) is a validated, generic patient-recorded outcome measure widely used in otolaryngology to report change in quality of life post-intervention.To date, no systematic review has made (i) a quality assessment of reporting of Glasgow Benefit Inventory outcomes; (ii) a comparison between Glasgow Benefit Inventory outcomes for different interventions and objectives; (iii) an evaluation of subscales in describing the area of benefit; (iv) commented on its value in clinical practice and research.Systematic review.'Glasgow Benefit Inventory' and 'GBI' were used as keywords to search for published, unpublished and ongoing trials in PubMed, EMBASE, CINAHL and Google in addition to an ISI citation search for the original validating Glasgow Benefit Inventory paper between 1996 and January 2015.Papers were assessed for study type and quality graded by a predesigned scale, by two authors independently. Papers with sufficient quality Glasgow Benefit Inventory data were identified for statistical comparisons. Papers with 50% and gave sufficient Glasgow Benefit Inventory total and subscales for meta-analysis. For five of the 11 operation categories (vestibular schwannoma, tonsillectomy, cochlear implant, middle ear implant and stapes surgery) that were most likely to have a single clear clinical objective, score data had low-to-moderate heterogeneity. The value in the Glasgow Benefit Inventory having both positive and negative scores was shown by an overall negative score for the management of vestibular schwannoma. The other six operations gave considerable heterogeneity with rhinoplasty and septoplasty giving the greatest percentages (98% and 99%) most likely because of the considerable variations in patient selection. The data from these operations should not be used for comparative purposes. Five papers also reported the number of patients that had no or negative benefit, a potentially a more clinically useful outcome to report. Glasgow Benefit Inventory subscores for tonsillectomy were significantly different from ear surgery suggesting different areas of benefitThe Glasgow Benefit Inventory has been shown to differentiate the benefit between surgical and medical otolaryngology interventions as well as 'reassurance'. Reporting benefit as percentages with negative, no and positive benefit would enable better comparisons between different interventions with varying objectives and pathology. This could also allow easier evaluation of factors that predict benefit. Meta-analysis data are now available for comparison purposes for vestibular schwannoma, tonsillectomy, cochlear implant, middle ear implant and stapes surgery. Fuller report of the Glasgow Benefit Inventory outcomes for non-surgical otolaryngology interventions is encouraged
Measurement of the Dalitz plot slope parameters for K- -> pi0 pi0 pi- decay using ISTRA+ detector
The Dalitz plot slope parameters g, h and k for the K- -> pi0 pi0 pi- decay
have been measured using in-flight decays detected with the ISTRA+ setup
operating in the 25 GeV negative secondary beam of the U-70 PS. About 252 K
events with four-momenta measured for the pi- and four involved photons were
used for the analysis. The values obtained g=0.627+/-0.004(stat)+/-0.010(syst),
h=0.046+/-0.004(stat)+/-0.012(syst), k=0.001+/-0.001(stat)+/-0.002(syst) are
consistent with the world averages dominated by K+ data, but have significantly
smaller errors.Comment: LaTeX, 10 pages, 8 eps-figures, update of IHEP 2002-1
Exact asymptotic form of the exchange interactions between shallow centers in doped semiconductors
The method developed in [L. P. Gor'kov and L. P. Pitaevskii, Sov. Phys. Dokl.
8, 788 (1964); C. Herring and M. Flicker, Phys. Rev. 134, A362 (1964)] to
calculate the asymptotic form of exchange interactions between hydrogen atoms
in the ground state is extended to excited states. The approach is then applied
to shallow centers in semiconductors. The problem of the asymptotic dependence
of the exchange interactions in semiconductors is complicated by the multiple
degeneracy of the ground state of an impurity (donor or acceptor) center in
valley or band indices, crystalline anisotropy and strong spin-orbital
interactions, especially for acceptor centers in III-V and II-VI groups
semiconductors. Properties of two coupled centers in the dilute limit can be
accessed experimentally, and the knowledge of the exact asymptotic expressions,
in addition to being of fundamental interest, must be very helpful for
numerical calculations and for interpolation of exchange forces in the case of
intermediate concentrations. Our main conclusion concerns the sign of the
magnetic interaction -- the ground state of a pair is always non-magnetic.
Behavior of the exchange interactions in applied magnetic fields is also
discussed
High statistics study of the K- -> pi0 e- nu decay
The decay K- -> pi0 e- nu has been studied using in-flight decays detected
with the "ISTRA+" spectrometer working at the 25 GeV negative secondary beam of
the U-70 PS. About 550K events were used for the analysis. The lambda+
parameter of the vector form-factor has been measured: lambda+ = 0.0286 +-
0.0008 (stat) +- 0.0006(syst). The limits on the possible tensor and scalar
couplings have been obtained: f(T)/f+(0)=0.021 +0.064 -0.075 (stat) +-
0.026(syst) ; f(S)/f+(0)=0.002 +0.020 -0.022 (stat) +- 0.003(syst)Comment: LaTeX-2e, epsfig.sty, 10 pages, 7 figures in EPS forma
Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs
We present a determination of the gluon polarization Delta G/G in the
nucleon, based on the helicity asymmetry of quasi-real photoproduction events,
Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final
state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV
polarized muon beam scattered on a polarized 6-LiD target. The helicity
asymmetry for the selected events is = 0.002 +- 0.019(stat.) +-
0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta
G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3
(GeV}/c)^2.Comment: 10 pages, 3 figure
Measurement of the Spin Structure of the Deuteron in the DIS Region
We present a new measurement of the longitudinal spin asymmetry A_1^d and the
spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 <
Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS
experiment at CERN using a 160 GeV polarised muon beam and a large polarised
6-LiD target. The results are in agreement with those from previous experiments
and improve considerably the statistical accuracy in the region 0.004 < x <
0.03.Comment: 10 pages, 6 figures, subm. to PLB, revised: author list, Fig. 4,
details adde
- β¦