47 research outputs found

    A simple derivation of level spacing of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter

    Full text link
    In this paper, we investigate analytically the level space of the imaginary part of quasinormal frequencies for a black hole with a deficit solid angle and quintessence-like matter by the Padmanabhan's method \cite{Padmanabhan}. Padmanabhan presented a method to study analytically the imaginary part of quasinormal frequencies for a class of spherically symmetric spacetimes including Schwarzschild-de Sitter black holes which has an evenly spaced structure. The results show that the level space of scalar and gravitational quasinormal frequencies for this kind of black holes only depend on the surface gravity of black-hole horizon in the range of -1 < w < -1/3, respectively . We also extend the range of ww to w1w \leq -1, the results of which are similar to that in -1 < w < -1/3 case. Particularly, a black hole with a deficit solid angle in accelerating universe will be a Schwarzschild-de Sitter black hole, fixing w=1w = -1 and ϵ2=0\epsilon^2 = 0. And a black hole with a deficit solid angle in the accelerating universe will be a Schwarzschild black hole,when ρ0=0\rho_0 = 0 and ϵ2=0\epsilon^2 = 0. In this paper, ww is the parameter of state equation, ϵ2\epsilon^2 is a parameter relating to a deficit solid angle and ρ0\rho_0 is the density of static spherically symmetrical quintessence-like matter at r=1r = 1.Comment: 6 pages, Accepted for publication in Astrophysics & Space Scienc

    Cosmological Black Holes on Branes

    Full text link
    We examined analytically a cosmological black hole domain wall system. Using the C-metric construction we derived the metric for the spacetime describing an infinitely thin domain wall intersecting a cosmological black hole. We studied the behaviour of the scalar field describing a self-interacting cosmological domain wall and find the approximated solution valid for large distances. The thin wall approximation and the back raection problem were elaborated finding that the topological kink solution smoothed out singular behaviour of the zero thickness wall using a core topological and hence thick domain wall. We also analyze the nucleation of cosmological black holes on and in the presence of a domain walls and conclude that the domain wall will nucleate small black holes on it rather than large ones inside.Comment: 13 pages, Revtex, to be published in Phys.Rev. D1

    Pair creation of anti-de Sitter black holes on a cosmic string background

    Full text link
    We analyze the quantum process in which a cosmic string breaks in an anti-de Sitter (AdS) background, and a pair of charged or neutral black holes is produced at the ends of the strings. The energy to materialize and accelerate the pair comes from the strings tension. In an AdS background this is the only study done in the process of production of a pair of correlated black holes with spherical topology. The acceleration AA of the produced black holes is necessarily greater than (|L|/3)^(1/2), where L<0 is the cosmological constant. Only in this case the virtual pair of black holes can overcome the attractive background AdS potential well and become real. The instantons that describe this process are constructed through the analytical continuation of the AdS C-metric. Then, we explicitly compute the pair creation rate of the process, and we verify that (as occurs with pair creation in other backgrounds) the pair production of nonextreme black holes is enhanced relative to the pair creation of extreme black holes by a factor of exp(Area/4), where Area is the black hole horizon area. We also conclude that the general behavior of the pair creation rate with the mass and acceleration of the black holes is similar in the AdS, flat and de Sitter cases, and our AdS results reduce to the ones of the flat case when L=0.Comment: 13 pages, 3 figures, ReVTeX

    Effects of sleep deprivation on neural functioning: an integrative review

    Get PDF
    Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research

    Signatures of muonic activation in the Majorana Demonstrator

    Get PDF
    Experiments searching for very rare processes such as neutrinoless double-beta decay require a detailed understanding of all sources of background. Signals from radioactive impurities present in construction and detector materials can be suppressed using a number of well-understood techniques. Background from in situ cosmogenic interactions can be reduced by siting an experiment deep underground. However, the next generation of such experiments have unprecedented sensitivity goals of 1028 years half-life with background rates of 10-5cts/(keV kg yr) in the region of interest. To achieve these goals, the remaining cosmogenic background must be well understood. In the work presented here, Majorana Demonstrator data are used to search for decay signatures of metastable germanium isotopes. Contributions to the region of interest in energy and time are estimated using simulations and compared to Demonstrator data. Correlated time-delayed signals are used to identify decay signatures of isotopes produced in the germanium detectors. A good agreement between expected and measured rate is found and different simulation frameworks are used to estimate the uncertainties of the predictions. The simulation campaign is then extended to characterize the background for the LEGEND experiment, a proposed tonne-scale effort searching for neutrinoless double-beta decay in Ge76

    Experimental study of C 13 (α,n) O 16 reactions in the Majorana Demonstrator calibration data

    Get PDF
    Neutron captures and delayed decays of reaction products are common sources of backgrounds in ultrarare event searches. In this work, we studied C13(α,n)O16 reactions induced by α particles emitted within the calibration sources of the Majorana Demonstrator. These sources are thorium-based calibration standards enclosed in carbon-rich materials. The reaction rate was estimated by using the 6129-keV γ rays emitted from the excited O16 states that are populated when the incoming α particles exceed the reaction Q value. Thanks to the excellent energy performance of the Demonstrator's germanium detectors, these characteristic photons can be clearly observed in the calibration data. Facilitated by Geant4 simulations, a comparison between the observed 6129-keV photon rates and predictions by a talys-based software was performed. The measurements and predictions were found to be consistent, albeit with large statistical uncertainties. This agreement provides support for background projections from (α,n) reactions in future double-beta decay search efforts

    The Majorana Demonstrator: A Search for Neutrinoless Double-beta Decay of 76Ge

    Get PDF
    Neutrinoless double-beta (0νββ) decay is a hypothesized process where in some even-even nuclei it might be possible for two neutrons to simultaneously decay into two protons and two electrons without emitting neutrinos. This is possible only if neutrinos are Majorana particles, i.e. fermions that are their own antiparticles. Neutrinos being Majorana particles would explicitly violate lepton number conservation, and might play a role in the matter-antimatter asymmetry in the universe. The observation of neutrinoless double-beta decay would also provide complementary information related to neutrino masses. The Majorana Collaboration is constructing the MAJORANA DEMONSTRATOR, with a total of 40-kg Germanium detectors, to search for the 0νββ decay of 76Ge and to demonstrate a background rate at or below 3 counts/(ROI•t•y) in the 4 keV region of interest (ROI) around the 2039 keV Q-value for 76Ge 0νββ decay. In this paper, we discuss the physics of neutrinoless double beta decay and then focus on the MAJORANA DEMONSTRATOR, including its design and approach to achieve ultra-low backgrounds and the status of the experiment

    The Majorana Demonstrator readout electronics system

    Get PDF
    The Majorana Demonstrator comprises two arrays of high-purity germanium detectors constructed to search for neutrinoless double-beta decay in 76Ge and other physics beyond the Standard Model. Its readout electronics were designed to have low electronic noise, and radioactive backgrounds were minimized by using low-mass components and low-radioactivity materials near the detectors. This paper provides a description of all components of the Majorana Demonstrator readout electronics, spanning the front-end electronics and internal cabling, back-end electronics, digitizer, and power supplies, along with the grounding scheme. The spectroscopic performance achieved with these readout electronics is also demonstrated

    Search for Neutrinoless Double- β Decay in Ge 76 with the Majorana Demonstrator

    Get PDF
    The Majorana Collaboration is operating an array of high purity Ge detectors to search for neutrinoless double-β decay in Ge76. The Majorana Demonstrator comprises 44.1 kg of Ge detectors (29.7 kg enriched in Ge76) split between two modules contained in a low background shield at the Sanford Underground Research Facility in Lead, South Dakota. Here we present results from data taken during construction, commissioning, and the start of full operations. We achieve unprecedented energy resolution of 2.5 keV FWHM at Qββ and a very low background with no observed candidate events in 9.95 kg yr of enriched Ge exposure, resulting in a lower limit on the half-life of 1.9×1025 yr (90% C.L.). This result constrains the effective Majorana neutrino mass to below 240-520 meV, depending on the matrix elements used. In our experimental configuration with the lowest background, the background is 4.0-2.5+3.1 counts/(FWHM t yr)

    Project overview of OPTIMOS-EVE: The fibre-fed multi-object spectrograph for the E-ELT

    No full text
    OPTIMOS-EVE (OPTical Infrared Multi Object Spectrograph - Extreme Visual Explorer) is the fibre fed multi object spectrograph proposed for the European Extremely Large Telescope (E-ELT), planned to be operational in 2018 at Cerro Armazones (Chile). It is designed to provide a spectral resolution of 6000, 18000 or 30000, at wavelengths from 370 nm to 1.7 μm, combined with a high multiplex (&gt;200) and a large spectral coverage. Additionally medium and large IFUs are available. The system consists of three main modules: a fibre positioning system, fibres and a spectrograph. The recently finished OPTIMOS-EVE Phase-A study, carried out within the framework of the ESO E-ELT instrumentation studies, has been performed by an international consortium consisting of institutes from France, Netherlands, United Kingdom and Italy. All three main science themes of the E-ELT are covered by this instrument: Planets and Stars; Stars and Galaxies; Galaxies and Cosmology. This paper gives an overview of the OPTIMOS-EVE project, describing the science cases, top level requirements, the overall technical concept and the project management approach. It includes a description of the consortium, highlights of the science drivers and resulting science requirements, an overview of the instrument design and telescope interfaces, the operational concept, expected performance, work breakdown and management structure for the construction of the instrument, cost and schedule. © 2010 Copyright SPIE - The International Society for Optical Engineering
    corecore