30 research outputs found

    Carbon Nanotube Doped Tellurite Glasses

    Get PDF
    In the past it was observed that buck ball doped glasses showed enhanced optical nonlinearities. However, carbon nanotubes are much more stable than buck ball and should be a better choice for that purpose. Therefore we decided to investigate the possibility to produce carbon nanotubes doped tellurite glasses and measured their optical nonlinearities. Tellurite glasses already have a larger nonlinearity compared to silica, and other, glasses. We produced TeO 2-ZnO tellurite family glasses doped with multi wall Carbon Nanotube (CNT). The CNTs acquired from Carbolex were vigorously mechanically mixed with the tellurite glass precursors and melted in platinum crucible around 650°C in a controlled atmosphere inside an electrical induction furnace. We used the lowest temperature possible and controlled atmosphere to avoid the CNT oxidation. The glass melt was cast in a stainless steel and thermally treated at 300°C for 5 hours to relieve internal stresses. The samples were than cutted and polished to perform the optical characterization. We measured refractive index and thermo physical properties, such as vitreous transition Tg, crystallization onset Tx and melting Tf temperatures. Raman spectroscopy showed the possible presence of CNTs.6890Iijima, S., (1991) Nature, 354, p. 56http://www.ati.surrey.ac.uk/news/n, onlinearDiMaio, J., Rhyne, S., Yang, Z., Fu, K., Czerw, R., Xu, J., Webster, S., Ballato, J., (2003) Information Sciences, 149, p. 69Aoki, Y., Okubo, S., Kataura, H., Nagasawa, H., Achiba, Y., (2005) Chem. Lett, 34 (4), p. 562Misra, S.K., Watts, P.C.P., Valappil, S.P., Silva, S.R.P., Roy, I., Boccaccini, A.R., (2007) Nanotechnology, 18, p. 07570

    Fast Detection Of Paracetamol On A Gold Nanoparticle-chitosan Substrate By Sers

    Get PDF
    A fast method for detecting pharmaceutical drugs, such as paracetamol, by surface-enhanced Raman spectroscopy (SERS) using a gold nanoparticle substrate was studied. Gold nanoparticles were synthesized using chitosan (AuNP-chitosan) as a reductant and capping agent and subsequently deposited on glass slides as a thin film. The SERS performance of AuNP-chitosan films was evaluated using methylene blue (MB, 10-6 mol L-1) as a SERS probe molecule. The method is based on drop-drying an analyte solution (paracetamol, 10-3 mol L-1) onto a substrate surface and subsequently analyzing by Raman spectroscopy. The spectra were obtained in 10 seconds with two accumulations and exhibit a high signal-to-noise ratio. This preliminary study supports the AuNP-chitosan substrate as a SERS sensor, for a convenient analytical method for detection of paracetamol and other pharmaceutical drug molecules. © the Partner Organisations 2014.61135643568Halling-Sorensen, B., Nielsen, N., Lansky, P.F., Ingersley, F., Hansen, L., Lutzhoft, H.C., Jorgensen, S.E., (1998) Chemosphere, 36, p. 357Daughton, C.G., Ternes, T.A., (1999) Environ. Health Perspect., 107, p. 907Klimova, K., Leitner, J., (2012) Thermochim. Acta, 550, p. 59Parojcic, J., Karljikovic-Rajic, K., Duric, Z., Jovanovic, M., Ibric, S., (2003) Biopharm. Drug Dispos., 24, p. 309Holm, J.V., Rugge, K., Bjerg, P.L., Christensen, T.H., (1995) Environ. Sci. Technol., 29, p. 1415Ternes, T.A., (1998) Water Res., 32, p. 3245Reddersen, K., Heberer, T., Dunnbier, U., (2002) Chemosphere, 49, p. 539Zwiener, C., Glauner, T., Frimmel, F.H., (2000) High Resolut. Chromatogr., 23, p. 474Buser, H.R., Poiger, T., Muller, M.D., (1999) Environ. Sci. Technol., 33, p. 2529Chen, L.-X., Li, D.-W., Qu, L.-L., Li, Y.-T., Long, Y.-T., (2013) Anal. Methods, 5, p. 6579Péron, O., Rinnert, E., Toury, T., Chapelle, M.L., Compere, C., (2011) Analyst, 136, p. 1018Alvarez-Puebla, R.A., Liz-Marzan, L.M., (2012) Angew. Chem., Int. Ed., 51, p. 11214Fleischmann, M., Hendra, P.J., McQuillan, A.J., (1974) Chem. Phys. Lett., 26, p. 63Le Ru, E.C., Etchegoin, P.G., (2009) Principles of Surface-enhanced Raman Spectroscopy, , Elsevier, AmsterdamAroca, R., (2006) Surface-enhanced Vibrational Spectroscopy, , John Wiley & Sons, Southern GateZhang, Y., Liu, S., Wang, L., Qin, X., Tian, J., Lu, W., Chang, G., Sun, X., (2012) RSC Adv., 2, p. 538Moula, G., Aroca, R.F., (2011) Anal. Chem., 83, p. 284Yu, W.W., White, I.M., (2012) Analyst, 137, p. 1168Zhai, W.L., Li, D.W., Qu, L.L., Fossey, J.S., Long, Y.T., (2012) Nanoscale, 4, p. 37Alsawafta, M., Badilescu, S., Packirisamy, M., Truong, V.V., (2011) React. Kinet., Mech. Catal., 104, p. 437Esumi, K., Takei, N., Yoshimura, T., (2003) Colloids Surf., B, 32, p. 117Potara, M., Maniu, D., Astilean, S., (2009) Nanotechnology, 20, p. 315602Santos, E.B., Sigoli, F.A., Mazali, I.O., (2013) Vib. Spectrosc., 68, p. 246Wang, Y.Q., Liang, W.S., Geng, C.Y., (2009) Nanoscale Res. Lett., 4, p. 684Vieira, E.F.S., Cestari, A.R., Santos, E.B., Dias, F.S., (2005) J. Colloid Interface Sci., 289, p. 42Cheng, Y.-C., Yu, C.-C., Lo, T.-Y., Liu, Y.-C., (2012) Mater. Res. Bull., 47, p. 1107Nhung, T.T., Bu, Y., Lee, S.-W., (2013) J. Cryst. Growth, 373, p. 132Xiao, G.N., Man, S.Q., (2007) Chem. Phys. Lett., 447, p. 305Ruan, C.M., Wang, W., Gu, B.H., (2007) J. Raman Spectrosc., 38, p. 568Peng, Y., Niu, Z., Huang, W., Chen, S., Li, Z., (2005) J. Phys. Chem. B, 109, p. 10880Elbagerma, M.A., Azimi, G., Edwards, H.G.M., Alajtal, A.I., Scowen, I.J., (2010) Spectrochim. Acta, Part A, 75, p. 1403Chazallon, B., Celik, Y., Focsa, C., Guinet, Y., (2006) Vib. Spectrosc., 42, p. 206Nanubolu, J.B., Burley, J.C., (2012) Mol. Pharmaceutics, 9, p. 154

    Use Of Cscl To Enhance The Glass Stability Range Of Tellurite Glasses For Er3+ Doped Optical Fiber Drawing

    Get PDF
    Tellurite glasses are important as a host of Er3+ ions because of their great solubility and because they present broader gain bandwidths than Er3+-doped silica, with promise to increase the bandwidth of communication systems. However, the small glass stability range (GSR) of tellurite glasses compromises the quality of the optical fibers. We show that the addition of CsCl to tellurite glasses can increase their GSR, making it easier to draw good quality optical fibers. CsCl acts as a network modifier in glass systems, weakening the network by forming Te-Cl bonds. We show that the thermal expansion coefficient mismatch is in the right direction for optical fiber fabrication purposes and that the Bi2O3 content can be used to control the refractive index of clad and core glasses. Single-mode and multi-mode Er3+-doped optical fibers were produced by the rod-in-tube method using highly homogeneous TeO2-ZnO-Li 2O-Bi2O3-CsCl glasses. Far infrared spectra of the glass samples exhibit absorption bands of the Te-Cl bond.6469Mori, A., Ohishi, Y., Sudo, S., Erbium-doped tellurite glass fibre laser and amplifier (1997) Electron. Lett, 33 (10), pp. 863-864Sekiya, T., Mochida, N., Ohtsuka, A., Tonokawa, M., Raman-spectra of Mo-TeO2 (M = Mg, Sr, Ba and Zn) glasses (1994) J. Non-Cryst. Solids, 168, pp. 1-2,106-114Bindra, K.S., Bookey, H.T., Kar, A.K., Wherrette, B.S., Liu, X., Jha, A., Nonlinear optical properties of chalcogenide glasses: Observation of multiphoton absorption (2001) Appl. Phys. Lett, 79 (13), pp. 1939-1941Wang, J.S., Vogel, E.M., Snitzer, E., Jackel, J.L., da Silva, V.L., Silbergerg, Y., 1.3 ÎŒm emission of neodymium and praseodymium in tellurite-based glasses (1994) J. Non-Cryst. Solids, 178, pp. 109-113Shen, S., Jha, A., Zhang, E., Wilson, S.J., Compositional effects and spectroscopy of rare earths (Er3+, Tm3+, and Nd 3+) in tellurite glasses (2002) C.R. Chim, 5 (12), pp. 921-938Yamada, M., Mori, A., Ono, H., Kobayashi, K., Kanamori, T., Ohishi, Y., Broadband and gain-flattened Er3+-doped tellurite fibre amplifier constructed using a gain equaliser (1998) Electron. Lett, 34 (4), pp. 370-371Mori, K., Kobayashi, M., Yamada, T., Kanamori, K., Oikawa, Y., Nishida, Y., Ohishi, Y., Low noise broadband tellurite-based Er3+-doped fibre amplifiers (1998) Electron. Lett, 34 (9), pp. 887-888Snitzer, E., Vogel, E.M., Wang, J.S., Tellurite glass and fiber amplifier (1993), US Patent 5,251,062Aitken, B.G., Ellison, A.J.G., Tellurite glasses and optical components (2001), US Patent 6,194,334Ding, Y., Jiang, S., Hwang, B.C., Luo, T., Peyghambarian, N., Himei, Y., Ito, T., Miura, Y., Spectral properties of erbium-doped lead halotellurite glasses for 1.5 ÎŒm broadband amplification (2000) Opt. Mater, 15 (2), pp. 123-130Keiser, G., (1999) Optical Fiber Communication, , Mac-Graw Hill, New YorkBarbosa, L.C., Cesar, C.L., Mazali, I.O., Barbosa, L.C., Alves, O.L., Spectroscopic and thermal properties of Ga2S 3-Na2S-CsCl glasses (2006) J. Am. Ceram. Soc, 89 (3), pp. 1037-1041Mazali, I.O., Barbosa, L.C., Alves, O.L., Preparation and characterization of new niobophosphate glasses in the Li2O-Nb 2O5-CaO-P2O5 system (2004) J. Mater. Sci, 39 (6), pp. 1987-1995El-Kheshen, A.A., Zawrah, M.F., Sinterability, microstructure and properties of glass/ceramic composite (2003) Ceram. Int, 29 (3), pp. 251-257A. Hruby, Evaluation of glass-forming tendency by means of DTA, Czech. J. Phys. B, B22 1187-& (1972)Burger, H., Vogel, W., Kozhukharov, V., IR transmission and properties of glasses in the TeO2-[RNOM, RNXM, RN(SO4)M, RN(PO3)M and B2O3] systems (1985) Infr. Phys, 25 (1-2), pp. 395-409Higazy, A.A., Bridge, B., Infrared-Spectra of the vitreous system CO 3O4-P2O5 and their interpretation (1985) Jour. Mat. Sci, 20 (7), pp. 2345-2358Bridge, B., Round, R., Computation of the bulk modulus of the high temperature ceramic superconductor YBa2Cu3O7-X from unit-cell data (1988) Jour. Mat. Sci. Lett, 7 (1), pp. 63-65Reynoso, V.C.S., Barbosa, L.C., Alves, O.L., Aranha, N., CĂ©sar, C.L., Preparation and characterization of heavy-metal oxide glasses - Bi2O3-PbO-B2O3-GeO 2 system (1994) J. Mater. Chem, 4 (4), pp. 529-532Canale, J.E., Condrate, R.A., Nassau, K., Cornilsen, B.C., Characterization of various glasses in the binary PbO-GeO2 and Bi2O3-GeO2 systems (1986) J. Can. Ceram. Soc, 55, pp. 50-56Adams, D.M., Lloyd, M.H., Far-Infrared reflectance spectra of some hexachlorotellurates and other hexachlorometallates (1971) Jour. Chem. Soc. A.-Inorganic Phys Theor, 7, p. 878Gloge, D., Weakly guiding fibers (1971) Appl. Opt, , 10 [10] 2252-

    Morphosynthesis: High Fidelity Inorganic Replica Of The Fibrous Network Of Loofa Sponge (luffa Cylindrical)

    No full text
    High fidelity calcium carbonate and hydroxyapatite (bio) inorganic replicas of the fibrous network of the dried fruit of Luffa cylindrica are described, utilizing a facile synthetic route. The loofa sponge is a highly complex macroscopic architectural template, an inexpensive and sustainable resource. In the context of the morphosynthesis, the capability of replication of the loofa sponge opens the possibility of the use of biodiversity in obtaining new materials. We would like to emphasize that the template proposed in this paper, makes possible the preparation of inorganic replicas with a very desirable size, on the centimeter scale. This fact is innovative with respect to inorganic replicas described in the literature, which predominate at the micrometric scale, limited to the original size of the template.7712531Aza, P.N., GuitiĂĄn, F., Santos, C., Aza, S., CuscĂł, R., Artus, L., Vibrational properties of calcium phosphate compounds. 2. Comparison between hydroxyapatite and ÎČ-tricalcium phosphate (1997) Chem Mater, 9, pp. 916-922Bal, K.E., Bal, Y., Lallam, A., Gross morphology and absorption capacity of cell-fibers from the fibrous vascular system of Loofah (Luffa cylindrica) (2004) Textile Res J, 74, pp. 241-247Cook, G., Timms, P.L., Spickermann, C.G., Exact replication of biological structures by chemical vapor deposition of silica (2003) Angew Chem Int Ed, 42, pp. 557-559Dickinson, S.R., Mcgrath, K.M., Quantitative determination of binary and tertiary calcium carbonate mixtures using powder X-ray diffraction (2001) Analyst, 126, pp. 1118-1121Fan, X., Parker, D.J., Smith, M.D., Adsorption kinetics of fluoride on low cost materials (2003) Wat Res, 37, pp. 4929-4937Finisie, M.R., JosuĂ©, A., FĂĄverb, V.T., Laranjeira, M.C.M., Synthesis of calcium-phosphate and chitosan bioceramics for bone regeneration (2001) An Acad Bras Cienc, 73, pp. 525-532Hall, S.R., Bolger, H., Mann, S., Morphosyn-thesis of complex inorganic forms using pollen grain templates (2003) Chem Commun, 22, pp. 2784-2785Huang, L.M., Wang, H.T., Hayashi, C.Y., Tian, B.Z., Zhao, D.Y., Yan, Y.S., Single-strand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers (2003) J Mater Chem, 13, pp. 666-668Iqbal, M., Edyven, R.G.J., Alginate coated loofa sponge discs for the removal of cadmium from aqueous solutions (2004) Biotechnol Lett, 26, pp. 165-169Kawachi, E.Y., Bertran, C.A., Reis, R.R., Alves, O.L., Bioceramics: Tendencies and perspectives of an interdisciplinary area (2000) QuĂ­m Nova, 23, pp. 518-522Kontoyannis, C.G., Vagenas, N.V., Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy (2000) Analyst, 125, pp. 251-255Li, Z., Chung, S.W., Nam, J.M., Ginger, D.S., Mirkin, C.A., Living templates for the merarchical assembly of gold nanoparticles (2003) Angew Chem Int Ed, 42, pp. 2306-2309Mann, S., The chemistry of form (2000) Angew Chem Int Ed, 39, pp. 3392-3406Nakamura, T., Gnyloskurenko, S.V., Sakamoto, K., Byakova, A.V., Ishikawa, R., Development of new foaming agent for metal foam (2002) Mater Trans, 43, pp. 1191-1196Orlovskii, V.P., Komlev, V.S., Barinov, S.M., Hydroxyapatite and hydroxyapatite-based ceramics (2002) Inorg Mater, 38, pp. 973-984Ozin, G.A., Morphogenesis of biomineral and morphosynthesis of biomimetic forms (1997) Acc Chem Res, 30, pp. 17-27Saeri, M.R., Afshar, A., Ghorbani, M., Ehsani, N., Sorrell, C.C., The wet precipitation process of hydroxyapatite (2003) Mater Lett, 57, pp. 4064-4069Silva, C.C., Sombra, A.S.B., Raman spectroscopy measurements of hydroxyapatite obtained by mechanical alloying (2004) J Phys Chem Solids, 65, pp. 1031-1033Vagenas, N.V., Gatsouli, A., Kdntoyannis, C.G., Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy (2003) Talanta, 59, pp. 831-836Waal, D., Hutter, C., Vibrational spectra of a solid solution of cadmium and calcium pyrophosphate (1994) Mater Res Bull, 29, pp. 1129-1135Walsh, D., Lebeau, B., Mann, S., Morphosyn-thesis of calcium carbonate (vaterite) microsponges (1999) Adv Mater, 11, pp. 324-328Yang, M., Hashimoto, T., Hoshi, N., Myoga, H., Fluoride removal in a fixed bed packed with granular calcite (1999) Wat Res, 33, pp. 3395-3402Yu, J., Lei, M., Cheng, B., Zhao, X., Effects of PAA additive and temperature on morphology of calcium carbonate particles (2004) J Solid State Chem, 177, pp. 681-68

    Structural Investigation And Photoluminescent Properties Of Gadolinium(iii), Europium(iii) And Terbium(iii) 3-mercaptopropionate Complexes

    No full text
    This work reports on the synthesis, crystallographic determination and spectroscopic characterization of gadolinium(III), terbium(III) and europium(III) 3-mercaptopropionate complexes, aqua-tris(3-mercaptopropionate) lanthanide(III) - [Ln(mpa)3(H2O)]. The Judd-Ofelt intensity parameters were experimentally determined from emission spectrum of the [Eu(mpa)3(H2O)]complex and they were also calculated from crystallographic data. The complexes are coordination polymers, where the units of each complex are linked together by carboxylate groups leading to an unidimensional and parallel chains that by chemical interactions form a tridimensional framework. The emission spectrum profile of the [Eu(mpa) 3(H2O)] complex is discussed based on point symmetry of the europium(III) ion, that explains the bands splitting observed in its emission spectrum. Photoluminescent analysis of the [Gd(mpa)3(H 2O)] complex show no efficient ligand excitation but an intense charge transfer band. The excitation spectra of the [Eu(mpa)3(H 2O)] and [Tb(mpa)3(H2O)] complexes do not show evidence of energy transfer from the ligand to the excited levels of these trivalent ions. Therefore the emission bands are originated only by direct f-f intraconfigurational excitation of the lantanide(III) ions. © 2013 Springer Science+Business Media New York.241203211Niu, S.Y., Yang, G.D., Zhang, Y.L., Jin, J., Ye, L., Yang, Z.Z., (2002) J Mol Struc, 608, p. 95. , 1:CAS:528:DC%2BD38XjtFKisL4%3D 10.1016/S0022-2860(01)00938-3Kuchibhatla, S., Karakoti, A.S., Bera, D., Seal, S., (2007) Prog Mater Sci, 52, p. 699. , 1:CAS:528:DC%2BD2sXksV2gt7k%3D 10.1016/j.pmatsci.2006.08.001Stock, N., Biswas, S., (2012) Chem Rev, 112, p. 933. , 1:CAS:528:DC%2BC3MXhsV2ju73P 22098087 10.1021/cr200304eGagnon, K.J., Perry, H.P., Clearfield, A., (2012) Chem Rev, 112, p. 1034. , 1:CAS:528:DC%2BC3MXhsFCmsrnK 22126609 10.1021/cr2002257Czaja, A.U., Trukhan, N., MĂŒller, U., (2009) Chem Soc Rev, 38, p. 1284. , 1:CAS:528:DC%2BD1MXkvVamu7o%3D 19384438 10.1039/b804680hPan, L., Adams, K.M., Hernandez, H.E., Wang, X., Zheng, C., Hattori, Y., Kaneko, K., (2003) J Am Chem Soc, 125, p. 3062. , 1:CAS:528:DC%2BD3sXhtFeksLs%3D 12617673 10.1021/ja028996wLi, J.-R., Kuppler, R.J., Zhou, H.-C., (2009) Chem Soc Rev, 38, p. 1477. , 1:CAS:528:DC%2BD1MXkvVamurY%3D 19384449 10.1039/b802426jKuppler, R.J., Timmons, D.J., Fang, Q.-R., Li, J.-R., Makal, T.A., Young, M.D., Yuan, D., Zhou, H.-C., (2009) Coord Chem Rev, 253, p. 3042. , 1:CAS:528:DC%2BD1MXhtlagt7zM 10.1016/j.ccr.2009.05.019Lee, J.Y., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.B.T., Hupp, J.T., (2009) Chem Soc Rev, 38, p. 1450. , 1:CAS:528:DC%2BD1MXkvVamu7k%3D 19384447 10.1039/b807080fChoi, H.J., Lee, T.S., Suh, M.P., (1999) Angew Chem Int Ed, 38, p. 1405. , 1:CAS:528:DyaK1MXjsVyks7o%3D 10.1002/(SICI)1521-3773(19990517)38: 103.0.CO;2-HOuchi, A., Suzuki, Y., Ohki, Y., Koizumi, Y., (1988) Coord Chem Rev, 92, p. 29. , 1:CAS:528:DyaL1MXoslaltw%3D%3D 10.1016/0010-8545(88)85004-5Yu, C.-J., Tseng, W.-L., (2008) Langmuir, 24, p. 12717. , 1:CAS:528:DC%2BD1cXht1WlsbnI 18839969 10.1021/la802105bDevarajan, S., Vimalan, B., Sampath, S., (2004) J Colloid Interface Sci, 278, p. 126. , 1:CAS:528:DC%2BD2cXms1CmsLo%3D 15313645 10.1016/j.jcis.2004.05.038Geraldo, D.A., Duran-Lara, E.F., Aguayo, D., Cachau, R.E., Gonzalez-Nilo, F.D., Santos, L.S., (2011) Anal Bioanal Chem, 400, p. 483. , 1:CAS:528:DC%2BC3MXislCjtb8%3D 21373833 10.1007/s00216-011-4756-2D'Souza, S., Antunes, E., Litwinski, C., Nyokong, T., (2011) J Photochem Photobiol A, 220, p. 11. , 10.1016/j.jphotochem.2011.03.005Chmura, A., SzaciƂowski, K., Waksmundzka-GĂłra, A., Stasicka, Z., (2006) Nitric Oxide, 14, p. 247. , 1:CAS:528:DC%2BD28XksVWmsrg%3D 16337819 10.1016/j.niox.2005.10.005Gupta, T., Dhar, S., Nethaji, M., Chakravarty, A.R., (2004) Dalton Trans, p. 1896Kumar, P., Baidya, B., Chaturvedi, S.K., Khan, R.H., Manna, D., Manna, M., (2011) Inorg Chim Acta, 376, p. 264. , 1:CAS:528:DC%2BC3MXhtF2rtL3L 10.1016/j.ica.2011.06.022Su, Y.-T., Lan, G.-Y., Chen, W.-Y., Chang, H.-T., (2010) Anal Chem, 82, p. 8566. , 1:CAS:528:DC%2BC3cXht1ahtbrF 20873802 10.1021/ac101659dPrasad, P., Sasmal, P.K., Khan, I., Kondaiah, P., Kondaiah, A.R., (2011) Inorg Chim Acta, 372, p. 79. , 1:CAS:528:DC%2BC3MXmsleiur8%3D 10.1016/j.ica.2011.01.086Bear, J.L., Choppin, G.R., Quagliano, J.V., (1963) J Inorg Nucl Chem, 25, p. 513. , 1:CAS:528:DyaF3sXntVajsw%3D%3D 10.1016/0022-1902(63)80235-3Choppin, G.R., Martinez-Perez, L.A., (1968) Inorg Chem, 7, p. 2657. , 1:CAS:528:DyaF1MXjt1Wgtw%3D%3D 10.1021/ic50070a045Sheldrick, G.M., (2008) Acta Crystallogr A Found Crystallogr, 64, p. 112. , 10.1107/S0108767307043930Deacon, G.B., Phillips, R.J., (1980) Coord Chem Rev, 33, p. 227. , 1:CAS:528:DyaL3MXjvVOqsw%3D%3D 10.1016/S0010-8545(00)80455-5Latva, M., Takalo, H., Mukkala, V.-M., Matachescuc, C., Rodriguez-Ubisd, J.C., Kankare, J., (1997) J Lumin, 75, p. 149. , 1:CAS:528:DyaK2sXlvVKktLY%3D 10.1016/S0022-2313(97)00113-0Souza, E.R., Silva, I.G.N., Teotonio, E.E.S., Felinto, M., Brito, H.F., (2010) J Lumin, 130, p. 283. , 10.1016/j.jlumin.2009.09.004Judd, B.R., (1962) Phys Rev, 127, p. 750. , 1:CAS:528:DyaF38Xkslens7c%3D 10.1103/PhysRev.127.750Ofelt, G.S., (1962) J Chem Phys, 37, p. 511. , 1:CAS:528:DyaF3sXpvVE%3D 10.1063/1.1701366Monteiro, J., Adati, R.D., Davolos, M.R., Vicenti, J.R.M., Burrow, R.A., (2011) New J Chem, 35, p. 1234. , 1:CAS:528:DC%2BC3MXmslygsb0%3D 10.1039/c0nj00831aSĂĄ, G.F., Malta, O.L., DonegĂĄ, C.M., Simas, A.M., Longo, R.L., Santa-Cruz, P.A., Silva, Jr.E.F., (2000) Coord Chem Rev, 196, p. 165. , 10.1016/S0010-8545(99)00054-5Souza, E.R., Zulato, C.H.F., Mazali, I.O., Sigoli, F.A., (2013) J Fluor, , 10.1007/s10895-013-1219-5Monteiro, J., Mazali, I.O., Sigoli, F.A., (2011) J Fluor, 21, p. 2237. , 1:CAS:528:DC%2BC3MXhsVams7%2FP 10.1007/s10895-011-0928-

    Integrated Chemical Systems Built Using Nanoporous Glass/ceramics As Substrates

    No full text
    It is well known that nanocrystals exhibit great instabilities associated with their high surface energy. In this concern, nanocrystals grown inside the cavities of a porous host become an attractive integrated chemical system (ICS) because certain processes can be performed in a restricted environment where porous act as nanoreactors. In this work we report the synthesis and characterization of nanosized semiconductors SnO2 and CdS dispersed in porous monoliths. The former was obtained dispersed in porous Vycor glass (PVG) and α-NbPO5 glass-ceramic, and the latter in PVG. It was observed that the semiconductor crystallites incorporated in porous monoliths are smaller than those obtained for free precursors decompositions. © 2005 Elsevier B.V. All rights reserved.49501/02/156467Wang, Y., Herron, N., (1991) J. Phys. Chem., 95, p. 525Pan, L., Pingsheng, H., Gang, Z., Dazhu, C., (2003) Mater. Lett., 58, p. 176McAleer, J.F., Mosely, P.T., Norris, J.O.W., Willians, N.E., (1978) J. Chem. Soc., Faraday Trans., 83, p. 1323Hong, S.J., Han, J.I., (2004) Sens. Actuators, A, Phys., 112, p. 80Cassagneau, T., Hix, G.B., Jones, D.J., Torres, P.M., Rhomari, M., RoziÚre, J., (1994) J. Mater. Chem., 4, p. 189ChanÚac, C., Tronc, E., Jolivet, J.P., (1996) J. Mater. Chem., 6, p. 1905Bard, A.J., (1994) Integrated Chemical Systems-A Chemical Approach to Nanotechnology, , John Wiley & Sons New YorkO'Brien, P., Malik, M.A., Chunggaze, M., Trindade, T., Walsh, J.R., Jones, A.C., (1997) J. Cryst. Growth, 170, p. 23Mazali, I.O., Alves, O.L., (2001) J. Mater. Sci. Lett., 20, p. 2113Mazali, I.O., Barbosa, L.C., Alves, O.L., (2004) J. Mater. Sci., 39, p. 1987Volf, M.B., (1990) Technical Approach to Glass, , Elsevier AmsterdamTrindade, T., O'Brien, P., Zhang, X., Motevalli, M., (1997) J. Mater. Chem., 7, p. 1011Jenkins, R., Snyder, R.L., (1996) Introduction to X-ray Powder Diffractometry, , John Wiley & Sons London(1973) Powder Diffraction File Search Manual-inorganic, , Published by the Joint Committee on Powder Diffractions Standards, Pennsylvania, (a) Card 41-1445 (b) Card 41-104

    Nanothermometer based on intensity variation and emission lifetime of europium(III) benzoylacetonate complex

    No full text
    Temperature dependence of the photophysical properties of europium(III) complex with the benzoylcetonate ligand were evaluated. The photostability of the complex and the temperature dependence of the 5D0 → 7F2 transition band area (maximum relative sensitivity of 5.25% K−1 at 303 K) makes this complex promising as temperature probe. The temperature dependence of the 5D0 → 7F0 transition band indicates that the electron-phonon coupling is probably the main mechanism operating in the temperature dependence of the photophysical properties of the complex.192224230CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informação2013/22127-

    Structural Evolution In Crystalline Moo 3 Nanoparticles With Tunable Size

    No full text
    In this study MoO 3 nanoparticles were prepared in porous Vycor glass by impregnation-decomposition cycles (IDC) with molybdenum(VI) 2-ethylhexanoate. X-ray diffraction data show that the nanoparticles are crystalline and are in the orthorhombic α-MoO 3 phase. Raman spectroscopy data also indicate the formation of this phase. The profiles in the Raman spectra changed with the number of IDC, indicating a structural evolution of the MoO 3 nanoparticles. The IDC methodology promoted a linear mass increase and allowed tuning the nanoparticle size. Analysis of HRTEM images revealed that for 3, 5 and 7 IDC, the MoO 3 nanoparticle average diameters are 3.2, 3.6 and 4.2 nm. Diffuse reflectance spectroscopy indicates a consistent red shift in the band gap from 3.35 to 3.29 eV as the size increases from 3.2 to 4.2 nm. This observed red shift in the band gap of the MoO 3 nanoparticles is presumably due to quantum confinement effects. © 2012 Elsevier Inc.1908084Perkas, N., Amirian, G., Girshevitz, O., Charmet, J., Laux, E., Guinert, G., Keppner, H., Gedanken, A., (2011) Surf. Coat. Technol., 205, p. 3190Nair, A.S., Jose, R., Shengyuan, Y., Ramakrishna, S., (2011) J. Colloid Interface Sci., 353, p. 39Wang, Q., Pan, Y.Z., Huang, S.S., Ren, S.T., Li, P., Li, J.J., (2011) Nanotechnology, 22, p. 025501Xu, L., Song, H., Dong, B., Wang, Y., Chen, J., Bai, X., (2010) Inorg. Chem., 49, p. 10590Ressler, T., Walter, A., Huang, Z.-D., Bensch, W., (2008) J. Catal., 254, p. 170TomĂĄs, S.A., Arvizu, M.A., Zelaya-Angel, O., RodrĂ­guez, P., (2009) Thin Solid Films, 518, p. 1332Liu, J.X., Ando, Y., Dong, X.L., Shi, F., Yin, S., Adachi, K., Chonan, T., Sato, T., (2010) J. Solid State Chem., 183, p. 2456Sauvet, K., Sauques, L., Rougier, A., (2010) J. Phys. Chem. Solids, 71, p. 696Ahmad, M.I., Bhattacharya, S.S., (2009) Appl. Phys. Lett., 95, p. 191906Balaji, S., Djaoued, Y., Robichaud, J., (2006) J. Raman Spectrosc., 37, p. 1416Tsunekawa, S., Wang, J.T., Kawazoe, Y., (2006) J. Alloys Compd., 408, p. 1145Yang, C.C., Li, S., (2008) J. Phys. Chem. B, 112, p. 14193Elliot, R.J., (1957) Phys. Rev., 108, p. 1384Julien, C., Khelfa, A., Hussain, O.M., Nazri, J.A., (1995) J. Cryst. Growth, 156, p. 235Reverchon, E., Della Porta, G., Torino, E., Supercrit, J., (2010) Fluids, 53, p. 95Kim, W.S., Kim, H.C., Hong, S.H., (2010) J. Nanopart. Res., 12, p. 1889Parviz, D., Kazemeini, M., Rashidi, A.M., Jozani, K.J., (2010) J. Nanopart. Res., 12, p. 1509Khademi, A., Azimirad, R., Nien, Y.T., Moshfegh, A.Z., (2011) J. Nanopart. Res., 13, p. 115Li, S., Shao, C., Liu, Y., Tang, S., Mu, R., (2006) J. Phys. Chem. Solids, 67, p. 1869Dhanasankar, M., Purushothaman, K.K., Muralidharan, G., (2011) Appl. Surf. Sci., 257, p. 2074Dhanasankar, M., Purushothaman, K.K., Muralidharan, G., (2010) Solid State Sci., 12, p. 246Bouzidi, A., Benramdane, N., Tabet-Deraz, H., Mathieu, C., Khelifa, B., Desfeux, R., (2003) Mater. Sci. Eng. B, 97, p. 5Mazali, I.O., Souza Filho, A.G., Viana, B.C., Mendes Filho, J., Alves, O.L., (2006) J. Nanopart. Res., 8, p. 141Mazali, I.O., Viana, B.C., Alves, O.L., Mendes Filho, J., Filho, A.G.S., (2007) J. Phys. Chem. Solids, 68, p. 622Cangussu, D., Nunes, W.C., CorrĂȘa, H.L.S., MacEdo, W.A.A., Knobel, M., Alves, O.L., Souza Filho, A.G., Mazali, I.O., (2009) J. Appl. Phys., 105, p. 013901Alves, O.L., Ronconi, C.M., Galembeck, A., (2002) Quim. Nova, 25, p. 69Ronconi, C.M., Gonçalves, D., Suvorova, N., Alves, O.L., Irene, E.A., (2008) J. Phys. Chem. Solids, 70, p. 234CorrĂȘa, D.N., Souza Silva E, J.M., Santos, E.B., Sigoli, F.A., Souza Filho, A.G., Mazali, I.O., (2011) J. Phys. Chem. C, 115, p. 10380Zeng, H.C., (1998) J. Cryst. Growth, 186, p. 393Santos, E.B., Souza Silva E, J.M., Mazali, I.O., (2010) Mater. Res. Bull., 45, p. 1707Thielemann, J.P., Ressler, T., Walter, A., Muller, G.T., Hess, C., (2011) Appl. Catal., A, 399, p. 28Haus, J.W., Shou, H.S., Honma, I., Komiyama, H., (1993) Phys. Rev. B, 47, p. 1359Santos, E.B., Souza Silva E, J.M., Mazali, I.O., (2010) Vib. Spectrosc., 54, p. 54. , 89Williams, P., Norris, K., (2001) Near-Infrared Technology in the Agricultural and Food Industries, , American Association of Cereal Chemists Saint Paul, M

    Study Of Structure Of The Tio2-moo3 Bilayer Films By Raman Spectroscopy

    No full text
    In this work, TiO2-MoO3 films were easily prepared by dip-coating technique and metallo-organic decomposition process (MOD). Raman analyses indicate the formation of TiO2 in anatase phase and orthorhombic phase of α-MoO3. It was observed that the Raman bands intensities attributed to TiO2 and MoO3 oxides were dependent on the number of decomposition-deposition cycles (DDC). The different number of DDC generates films with different thicknesses and the Raman signal was sensitive to this variation. Raman analyses provided qualitative information about the bilayer structure of the bi-component TiO2-MoO3 films, which was confirmed by scanning electron microscopy. In this direction, the dip-coating technique and MOD process can be an efficient strategy to facile preparation of many samples to be used in applications. © 2014 Elsevier Ltd.60e242e246Lamic-Humblot, A.F., Barthe, P., Guzman, G., Delannoy, L., Louis, C., (2013) Thin Solid Films, 527, p. 96Zhao, Y., Yang, B., Xu, J., Fu, Z., Wu, M., Li, F., (2012) Thin Solid Films, 520, p. 3515MartĂ­nez, H.M., Torres, J., RodrĂ­guez-GarcĂ­a, M.E., Carreño, L.D.L., (2012) Phys. B Con. Matter, 407, p. 3199Hsu, C.S., Chan, C.C., Huang, H.T., Peng, C.H., Hsu, W.C., (2010) Thin Solid Films, 516, p. 4839Vomiero, A., Della Mea, D., Ferroni, M., Martinelli, G., Roncarati, G., Guidi, V., Comini, E., Sberveglieri, G., (2003) Mater. Sci. Eng. B, 101, p. 216Tucker, R.T., Beckers, N.A., Fleischauer, M.D., Brett, M.J., (2012) Thin Solid Films, 525, p. 28Khan, T.M., Mehmood, M.F., Mahmood, A., Shah, A., Raza, Q., Iqbal, A., Aziz, U., (2011) Thin Solid Films, 519, p. 5971Ronconi, C.M., Alves, O.L., Bruns, R.E., (2009) Thin Solid Films, 517, p. 2886Santos, E.B., Silva, J.M.S., Mazali, I.O., (2010) Vib. Spectrosc., 54, p. 89Santos, E.B., Sigoli, F.A., Mazali, I.O., (2012) J. Solid State Chem., 190, p. 80Li, Y., Galatsis, K., Wlodarski, W., Ghantasala, M., Russo, S., Gorman, J., Santucci, S., Passacantando, M., (2011) J. Vac. Sci. Technol. A, 19, p. 904Huang, Y., Li, D., Feng, J., Li, G., Zhang, Q., (2010) J. Sol-Gel Sci. Technol., 54, p. 276Al-Kandari, H., Al-Kharafi, F., Al-Awadi, N., El-Dusouqui, O.M., Katrib, A., (2006) J. Electron. Spectrosc. Relat. Phenom., 151, p. 128BarnabĂ©, A., Chapelle, A., Presmanes, L., Tailhades, P., (2013) J. Mater. Sci., 48, p. 3386Cole, I.S., Muster, T.H., Lau, D., Wright, N., Asmat, N.S., (2010) J. Electrochem. Soc., 157, p. 213CorrĂȘa, D.N., Silva, J.M.S., Santos, E.B., Sigoli, F.A., Souza Filho, A.G., Mazali, I.O., (2011) J. Phys. Chem. C, 115, p. 10380Ghimbeu, C.M., Lumbreras, M., Schoonman, J., Siadat, M., (2009) Sensors, 9, p. 9122Li, L., Mizuhata, M., Deki, S., (2005) Appl. Surf. Sci., 239, p. 292Mazali, I.O., Souza Filho, A.G., Viana Neto, B.C., Mendes Filho, J., Alves, O.L., (2006) J. Nanopart. Res., 8, p. 141Lee, Y.J., Seo, Y.I., Kim, S.H., Kim, D.G., Kim, Y.D., (2009) Appl. Phys. A - Mater., 97, p. 237Georgescu, D., Baia, L., Ersen, O., Baia, M., Simon, S., (2012) J. Raman Spectrosc., 43, p. 876Yao, D.D., Ou, J.Z., Latham, K., Zhuiykov, S., O'Mullane, A.P., Kalantar-Zadeh, K., (2012) Cryst. Growth Des., 12, p. 1865Atuchin, V.V., Gavrilova, T.A., Grigorieva, T.I., Kuratieva, N.V., Okotrub, K.A., Pervukhina, N.V., Surovtsev, N.V., (2011) J. Cryst. Growth, 318, p. 987Santos, E.B., Silva, J.M.S., Mazali, I.O., (2010) Mater. Res. Bull., 45, p. 1707He, T., Yao, J., (2006) Prog. Mater. Sci., 51, p. 810Huang, H., Chen, G., Wang, S., Kang, L., Lin, Z., Zhang, Y., (2014) Mater. Res. Bull., 51, p. 45

    The Effect Of Preparation Method And Sb Content On Sno2-cuo Sintering

    No full text
    The sintering behavior of SnO2-CuO system has been investigated for two preparation methods and as a function of antimony concentration. A chemical preparation (Pechini's method) resulted in powders with smaller particle sizes than for a conventional oxide mixture. This led to smaller grain sizes in Pechini's method ceramics. The microstructures were heterogeneous in both systems, showing grain coarsening. The densification was aided by liquid phase formation, due to copper, in both systems, but the temperature of maximum shrinkage rate was larger for the Pechini's method ceramic because copper had to diffuse to the grain surface. Independently of the preparation method, antimony did not aid densification, and increasing its concentration led to a higher densification temperature and lower shrinkage rate. © 2003 Kluwer Academic Publishers.381533253330McAleer, J.F., Moseley, P.T., Morris, J.O., Williams, D.E., (1987) J. Chem. Soc. Faraday Trans., 83, p. 1323Tournier, G., Pijolat, C., Lalauzeand, R., Patissier, B., (1995) Sens. Actuators B, 26-27, p. 24Pianaro, S.A., Bueno, P.R., Longo, E., Varela, J.A., (1998) Ceram. Int., 25, p. 1Castro, M.S., Aldao, C.M., (1998) J. Eur. Ceram. Soc., 18, p. 2233Gouvea, D., Smith, A., Bonnet, J.P., Varela, I.A., (1998) J. Eur. Ceram. Soc., 18, p. 345Varela, J.A., GouvĂȘa, D., Longo, E., Dolet, N., Onillon, M., Bonnet, J.P., (1992) Solid State Phenom., 25-26, p. 259Cerri, J.A., Leite, E.R., Gouvea, D., Longo, E., Varela, J.A., (1996) J. Amer. Ceram. Soc., 79, p. 799Perazolli, L., Giraldi, T.R., Biscaro, R.S., Varela, J.A., Longo, E., (2000) Sint. Sci. and Techn., p. 117Dolet, N., Heintz, J.M., Rabardel, L., Onillon, M., Bonnet, J.P., (1995) J. Mater. Sci., 30, p. 365Duvigneaud, P.H., Reinhard, D., (1980) Sci. Ceram., 12, p. 287Lalande, J., Ollitrault-Fichet, R., Boch, P., (2000) J. Eur. Ceram. Soc., 20, p. 2415Bonnet, J.P., Dolet, N., Heintz, J.M., (1996) J. Eur. Ceram. Soc., 16, p. 1163GouvĂȘa, D., Smith, A., Bonnet, J.P., (1996) Eur. J. Solid State Inorg. Chem., 33, p. 1015Cox, P.A., Egdell, R.G., Harding, C., Patterson, W.R., Tavener, P.J., (1982) Surf. Sci., 123, p. 179Egdell, R.G., Flavell, W.R., Tavener, P., (1984) J. Solid State Chem., 51, p. 345Las, W.C., Dolet, N., Dordor, P., Bonnet, J.P., (1993) J. Appl. Phys., 74, p. 6191Szczuko, D., Werner, J., Oswald, S., Behr, G., Wetzig, K., (2001) Appl. Surf. Sci., 179, p. 301Szczuko, D., Werner, J., Behr, G., Oswald, S., Wetzig, K., (2001) Surf. Interface Anal., 31, p. 484Uematsu, K., Mizutani, N., Kato, M., (1987) J. Mater. Sci., 22, p. 915Uematsu, K., Kato, Z., Uchida, N., Saito, K., (1987) J. Amer. Ceram. Soc., 70, pp. 142CZaghete, M.A., Varela, J.A., Cilense, M., Paiva-Santos, C.O., Las, W.C., Longo, E., (1999) Ceram. Inter., 25, p. 239GouvĂȘa, D., Varela, J.A., Longo, E., Smith, A., Bonnet, J.P., (1993) Eur. J. Solid State Inorg. Chem., 30, p. 915Mazali, I.O., Las, W.C., Cilense, M., (1999) J. Mater. Synth. Process., 7, p. 387Santilli, C.V., Pulcinelli, S.H., (1993) CerĂąmica, 39, p. 11Gouvea, D., Varela, J.A., Smith, A., Bonnet, J.P., (1996) Eur. J. Solid State Inorg. Chem., 33, p. 343Sahar, M.R., Hasbullah, M., (1995) J. Mater. Sci., 30, p. 5304Chiang, Y.M., Birnie D.P. III, Kingery, W.D., (1997) Physical Ceramics: Principles for Ceramic Science and Engineering, p. 407. , John Wiley & Sons, New Yor
    corecore