15 research outputs found

    Finding a Spherically Symmetric Cosmology from Observations in Observational Coordinates -- Advantages and Challenges

    Full text link
    One of the continuing challenges in cosmology has been to determine the large-scale space-time metric from observations with a minimum of assumptions -- without, for instance, assuming that the universe is almost Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW). If we are lucky enough this would be a way of demonstrating that our universe is FLRW, instead of presupposing it or simply showing that the observations are consistent with FLRW. Showing how to do this within the more general spherically symmetric, inhomogeneous space-time framework takes us a long way towards fulfilling this goal. In recent work researchers have shown how this can be done both in the traditional Lema\^{i}tre-Tolman-Bondi (LTB) 3 + 1 coordinate framework, and in the observational coordinate (OC) framework. In this paper we investigate the stability of solutions, and the use of data in the OC field equations including their time evolution and compare both approaches with respect to the singularity problem at the maximum of the angular-diameter distance, the stability of solutions, and the use of data in the field equations. This allows a more detailed account and assessment of the OC integration procedure, and enables a comparison of the relative advantages of the two equivalent solution frameworks. Both formulations and integration procedures should, in principle, lead to the same results. However, as we show in this paper, the OC procedure manifests certain advantages, particularly in the avoidance of coordinate singularities at the maximum of the angular-diameter distance, and in the stability of the solutions obtained. This particular feature is what allows us to do the best fitting of the data to smooth data functions and the possibility of constructing analytic solutions to the field equations.Comment: 31 page

    Supernovae data and perturbative deviation from homogeneity

    Full text link
    We show that a spherically symmetric perturbation of a dust dominated Ω=1\Omega=1 FRW universe in the Newtonian gauge can lead to an apparent acceleration of standard candles and provide a fit to the magnitude-redshift relation inferred from the supernovae data, while the perturbation in the gravitational potential remains small at all scales. We also demonstrate that the supernovae data does not necessarily imply the presence of some additional non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model fitting the supernovae data (with appropriate initial conditions) will be equivalent to a perturbed FRW spacetime along the past light cone.Comment: 8 pages, 3 figures; v2: 1 figure added, references added/updated, minor modifications and clarifications, matches published versio

    Light-cone averaging in cosmology: formalism and applications

    Full text link
    We present a general gauge invariant formalism for defining cosmological averages that are relevant for observations based on light-like signals. Such averages involve either null hypersurfaces corresponding to a family of past light-cones or compact surfaces given by their intersection with timelike hypersurfaces. Generalized Buchert-Ehlers commutation rules for derivatives of these light-cone averages are given. After introducing some adapted "geodesic light-cone" coordinates, we give explicit expressions for averaging the redshift to luminosity-distance relation and the so-called "redshift drift" in a generic inhomogeneous Universe.Comment: 20 pages, 2 figures. Comments and references added, typos corrected. Version accepted for publication in JCA

    Strong Gravitational Lensing and Dark Energy Complementarity

    Full text link
    In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w_0 and time variation w_a. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1% accuracy can improve equation of state characterization by 15-50%. Next generation surveys should provide data on roughly 10^5 lens systems, though systematic errors will remain challenging.Comment: 7 pages, 5 figure

    Backreaction on the luminosity-redshift relation from gauge invariant light-cone averaging

    Full text link
    Using a recently proposed gauge invariant formulation of light-cone averaging, together with adapted "geodesic light-cone" coordinates, we show how an "induced backreaction" effect emerges, in general, from correlated fluctuations in the luminosity distance and covariant integration measure. Considering a realistic stochastic spectrum of inhomogeneities of primordial (inflationary) origin we find that both the induced backreaction on the luminosity-redshift relation and the dispersion are larger than naively expected. On the other hand the former, at least to leading order and in the linear perturbative regime, cannot account by itself for the observed effects of dark energy at large-redshifts. A full second-order calculation, or even better a reliable estimate of contributions from the non-linear regime, appears to be necessary before firm conclusions on the correct interpretation of the data can be drawn.Comment: 22 pages, 4 figures. Comments and references added, Fig. 1 modified. Version accepted for publication in JCA

    Constraints on the CMB temperature redshift dependence from SZ and distance measurements

    Full text link
    The relation between redshift and the CMB temperature, TCMB(z)=T0(1+z)T_{CMB}(z)=T_0(1+z) is a key prediction of standard cosmology, but is violated in many non-standard models. Constraining possible deviations to this law is an effective way to test the Λ\LambdaCDM paradigm and search for hints of new physics. We present state-of-the-art constraints, using both direct and indirect measurements. In particular, we point out that in models where photons can be created or destroyed, not only does the temperature-redshift relation change, but so does the distance duality relation, and these departures from the standard behaviour are related, providing us with an opportunity to improve constraints. We show that current datasets limit possible deviations of the form TCMB(z)=T0(1+z)1−ÎČT_{CMB}(z)=T_0(1+z)^{1-\beta} to be ÎČ=0.004±0.016\beta=0.004\pm0.016 up to a redshift z∌3z\sim 3. We also discuss how, with the next generation of space and ground-based experiments, these constraints can be improved by more than one order of magnitude.Comment: 27 pages, 11 figure

    Dark energy as a mirage

    Full text link
    Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free expansion Ht ~ 1 at low redshifts. To calculate the modified observable distance-redshift relations, we introduce a generalized Dyer-Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude-redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z_0=0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3: matches the version published in General Relativity and Gravitatio

    Light propagation in statistically homogeneous and isotropic universes with general matter content

    Full text link
    We derive the relationship of the redshift and the angular diameter distance to the average expansion rate for universes which are statistically homogeneous and isotropic and where the distribution evolves slowly, but which have otherwise arbitrary geometry and matter content. The relevant average expansion rate is selected by the observable redshift and the assumed symmetry properties of the spacetime. We show why light deflection and shear remain small. We write down the evolution equations for the average expansion rate and discuss the validity of the dust approximation.Comment: 42 pages, no figures. v2: Corrected one detail about the angular diameter distance and two typos. No change in result

    The Metric of the Cosmos from Luminosity and Age Data

    Full text link
    This paper presents the algorithm for determining the Lemaitre-Tolman (LT) model that best fits given datasets for maximum stellar ages, and SNIa luminosities, both as functions of redshift. It then applies it to current cosmological data. Special attention must be given to the handling of the origin, and the region of the maximum diameter distances. As with a previous combination of datasets (galaxy number counts and luminosity distances versus redshift), there are relationships that must hold at the region of the maximum diameter distance, which are unlikely to be obeyed exactly by real data. We show how to make corrections that enable a self-consistent solution to be found. We address the questions of the best way to approximate discrete data with smooth functions, and how to estimate the uncertainties of the output - the 3 free functions that determine a specific LT metric. While current data does not permit any confidence in our results, we show that the method works well, and reasonable LT models do fit with or without a cosmological constant.Comment: 25 pages, 8 figures; matches published versio

    Astronomical Distance Determination in the Space Age: Secondary Distance Indicators

    Get PDF
    The formal division of the distance indicators into primary and secondary leads to difficulties in description of methods which can actually be used in two ways: with, and without the support of the other methods for scaling. Thus instead of concentrating on the scaling requirement we concentrate on all methods of distance determination to extragalactic sources which are designated, at least formally, to use for individual sources. Among those, the Supernovae Ia is clearly the leader due to its enormous success in determination of the expansion rate of the Universe. However, new methods are rapidly developing, and there is also a progress in more traditional methods. We give a general overview of the methods but we mostly concentrate on the most recent developments in each field, and future expectations. © 2018, The Author(s)
    corecore