7 research outputs found

    Charmed decays of the B-meson in the quark model

    Get PDF
    Exclusive and inclusive, semileptonic and non-leptonic, charmed decays of the B-meson are investigated in the context of a phenomenological quark model. Bound-state effects are taken care of by adopting a single (model-dependent) non-perturbative wave function, describing the motion of the light spectator quark in the B-meson. A nice reproduction of both exclusive and inclusive semileptonic data is obtained. Our predictions for the electron spectrum are presented and compared with those of the Isgur-Scora-Grinstein-Wise quark model. Finally, our approach is applied to the calculation of inclusive non-leptonic widths, obtaining a remarkable agreement with experimental findings.Comment: to appear in the Proc. of the 2^{nd} Int. Conf. on Hyperons, Charm and Beauty Hadrons, Montreal, Canada, 27-30 August 199

    Electromagnetic form factors of the ρ\rho meson in a light-front constituent quark model

    Full text link
    The electromagnetic form factors of the ρ\rho meson are evaluated adopting a relativistic constituent quark model based on the light-front formalism, and using a meson wave function with the high-momentum tail generated by the one-gluon-exchange interaction. The breakdown of the rotational covariance for the one-body component of the current operator is investigated and the sensitivity of the ratio of the ρ\rho-meson form factors to the pion (charge) form factor to the spin-dependent component of the effective qqˉq \bar{q} interaction is illustrated.Comment: 8 pages, latex file, 4 figures available as a separate .uu fil

    Radiative πρ\pi \rho and πω\pi \omega transition form factors in a light-front constituent quark model

    Full text link
    The form factors of the πρ\pi \rho and πω\pi \omega radiative transitions are evaluated within a light-front constituent quark model, using for the first time the eigenfunctions of a light-front mass operator reproducing the meson mass spectrum and including phenomenological Dirac and Pauli quark form factors in the one-body electromagnetic current operator. The sensitivity of the transition form factors both to the meson wave functions and to the constituent quark form factors is illustrated. It is shown that the measurement of the πρ\pi \rho and πω\pi \omega radiative transitions could help in discriminating among various models of the meson structure.Comment: 9 pages, latex, 4 figures available as separate .uu file, to appear in Phys. Lett.

    Hard Constituent Quarks and Electroweak Properties of Pseudoscalar Mesons

    Get PDF
    The high momentum components generated in the wave function of pseudoscalar mes* by the one-gluon-exchange interaction are investigated within a relativistic constituent quark model. Adopting the light-cone formalism, the sensitivity of the weak decay constant and the charge form factor to hard constituent quarks is illustrated.Comment: 11 pages and 5 figs. (to be requested), LaTeX, INFN-ISS 94/3. To appear in Physics Lett.

    A connection between inclusive semileptonic decays of bound and free heavy quarks

    Get PDF
    A relativistic constituent quark model, formulated on the light-front, is used to derive a new parton approximation for the inclusive semileptonic decay width of the B-meson. A simple connection between the decay rate of a free heavy-quark and the one of a heavy-quark bound in a meson or in a baryon is established. The main features of the new approach are the treatment of the b-quark as an on-mass-shell particle and the inclusion of the effects arising from the b-quark transverse motion in the B-meson. In a way conceptually similar to the deep-inelastic scattering case, the B-meson inclusive width is expressed as the integral of the free b-quark partial width multiplied by a bound-state factor related to the b-quark distribution function in the B-meson. The non-perturbative meson structure is described through various quark-model wave functions, constructed via the Hamiltonian light-front formalism using as input both relativized and non-relativistic potential models. A link between spectroscopic quark models and the B-meson decay physics is obtained in this way. Our predictions for the B -> X_c l nu_l and B -> X_u l nu_l decays are used to extract the CKM parameters |V_cb| and |V_ub| from available inclusive data. After averaging over the various quark models adopted and including leading-order perturbative QCD corrections, we obtain |V_cb| = (43.0 +/- 0.7_exp +/- 1.8_th) 10^-3 and |V_ub| = (3.83 +/- 0.48_exp +/- 0.14_th) 10^-3, implying |V_ub / V_cb| = 0.089 +/- 0.011_exp +/- 0.005_th, in nice agreement with existing predictions.Comment: revised version with pQCD corrections included, to appear in Physical Review
    corecore