13 research outputs found

    Field-Dependent Critical Current in Type-II Superconducting Strips: Combined Effect of Bulk Pinning and Geometrical Edge Barrier

    Full text link
    Recent theoretical and experimental research on low-bulk-pinning superconducting strips has revealed striking dome-like magnetic-field distributions due to geometrical edge barriers. The observed magnetic-flux profiles differ strongly from those in strips in which bulk pinning is dominant. In this paper we theoretically describe the current and field distributions of a superconducting strip under the combined influence of both a geometrical edge barrier and bulk pinning at the strip's critical current Ic, where a longitudinal voltage first appears. We calculate Ic and find its dependence upon a perpendicular applied magnetic field Ha. The behavior is governed by a parameter p, defined as the ratio of the bulk-pinning critical current Ip to the geometrical-barrier critical current Is0. We find that when p > 2/pi and Ip is field-independent, Ic vs Ha exhibits a plateau for small Ha, followed by the dependence Ic-Ip ~ 1/Ha in higher magnetic fields.Comment: 4 pages, 2 figures, Fig. 1 revised, submitted to Phys. Rev.

    Distribution of the magnetic field and current density in superconducting films of finite thickness

    Full text link
    A one-dimensional equation describing the distribution of the effective vector potential Aˉ(y)\bar A(y) across a film width, which holds for thin (dλd\lambda) films alike, is derived based on the analysis of a 2D Maxwell-Londons equation for superconducting films in a perpendicular magnetic field. The validity of this equation for a finite-thickness film is verified by a numerical analysis. An approximation dependence Aˉ(y)\bar A(y), finite (with all of its derivatives) across the entire film width, is found for films, being in the Meissner state. The flux-entry field is evaluated for a film of arbitrary thickness. An approximation expression is obtained for the distribution of the sheet current density in the mixed state of a pin-free superconducting film with an edge barrier. The latter approximation allows to estimate magnetic field concentration factor at the film edge as a function of external magnetic field and geometrical parameters of the sample.Comment: 12 pages, 10 figure

    Magnetic-field and current-density distributions in thin-film superconducting rings and disks

    Full text link
    We show how to calculate the magnetic-field and sheet-current distributions for a thin-film superconducting annular ring (inner radius a, outer radius b, and thickness d<<a) when either the penetration depth obeys lambda < d/2 or, if lambda > d/2, the two-dimensional screening length obeys Lambda = 2 lambda^2/d << a for the following cases: (a) magnetic flux trapped in the hole in the absence of an applied magnetic field, (b) zero magnetic flux in the hole when the ring is subjected to an applied magnetic field, and (c) focusing of magnetic flux into the hole when a magnetic field is applied but no net current flows around the ring. We use a similar method to calculate the magnetic-field and sheet-current distributions and magnetization loops for a thin, bulk-pinning-free superconducting disk (radius b) containing a dome of magnetic flux of radius a when flux entry is impeded by a geometrical barrier.Comment: 10 pages, 13 figure

    Exact Solution for the Critical State in Thin Superconductor Strips with Field Dependent or Anisotropic Pinning

    Full text link
    An exact analytical solution is given for the critical state problem in long thin superconductor strips in a perpendicular magnetic field, when the critical current density j_c(B) depends on the local induction B according to a simple three-parameter model. This model describes both isotropic superconductors with this j_c(B) dependence, but also superconductors with anisotropic pinning described by a dependence j_c(theta) where theta is the tilt angle of the flux lines away from the normal to the specimen plane

    Distribution of the magnetic field and current density in superconducting films of finite thickness

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Vortex entry conditions in type-II superconductors. Effect of surface defects

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    A new heterometallic pivalate {Fe<inf>8</inf>Cd} complex as an example of unusual "ferric wheel" molecular self-assembly

    No full text
    © 2020 The Royal Society of Chemistry. The interaction of the pivalate complexes of iron(iii), [Fe3O(Piv)6(H2O)3]·HPiv, and cadmium(ii), [Cd(Piv)2], in Et2O resulted in one more type of "ferric wheel"family complex, namely [Fe8(Piv)16{Cd(Piv)2}(μ-OH)8]·Et2O (1). The complex is an octanuclear iron(iii) wheel with a {Cd(Piv)2} moiety asymmetrically incorporated into the ring
    corecore