160 research outputs found
On the scaling approach to electron-electron interactions in a chaotic quantum dot
A scaling theory is used to study the low energy physics of electron-electron
interactions in a double quantum dot. We show that the fact that electrons are
delocalized over two quantum dots does not affect the instability criterion for
the description of electron-electron interactions in terms of a ``universal
interaction Hamiltonian''.Comment: 4 pages, 3 figure
Interaction-induced dephasing of Aharonov-Bohm oscillations
We study the effect of the electron-electron interaction on the amplitude of
mesoscopic Aharonov-Bohm oscillations in quasi-one-dimensional (Q1D) diffusive
rings. We show that the dephasing length L_phi^AB governing the damping factor
exp(-2piR / L_phi^AB) of the oscillations is parametrically different from the
common dephasing length for the Q1D geometry. This is due to the fact that the
dephasing is governed by energy transfers determined by the ring circumference
2piR, making L_phi^AB R-dependent.Comment: 4 pages, 2 figures. Minor changes, final version published in PR
Interaction corrections to the Hall coefficient at intermediate temperatures
We investigate the effect of electron-electron interaction on the temperature
dependence of the Hall coefficient of 2D electron gas at arbitrary relation
between the temperature and the elastic mean-free time . At small
temperature we reproduce the known relation between the
logarithmic temperature dependences of the Hall coefficient and of the
longitudinal conductivity. At higher temperatures, this relation is violated
quite rapidly; correction to the Hall coefficient becomes whereas
the longitudinal conductivity becomes linear in temperature.Comment: 4 pages, 3 .eps figure
Interaction corrections at intermediate temperatures: dephasing time
We calculate the temperature dependence of the weak localization correction
in a two dimensional system at arbitrary relation between temperature, and
the elastic mean free time. We describe the crossover in the dephasing time
between the high temperature, ,
and the low temperature behaviors. The prefactors in
these dependences are not universal, but are determined by the Fermi liquid
constant characterising the spin exchange interaction.Comment: 4 pages, to appear in PRB, minor errors corrected, added reference
Dephasing of Electrons in Mesoscopic Metal Wires
We have extracted the phase coherence time of electronic
quasiparticles from the low field magnetoresistance of weakly disordered wires
made of silver, copper and gold. In samples fabricated using our purest silver
and gold sources, increases as when the temperature
is reduced, as predicted by the theory of electron-electron interactions in
diffusive wires. In contrast, samples made of a silver source material of
lesser purity or of copper exhibit an apparent saturation of
starting between 0.1 and 1 K down to our base temperature of 40 mK. By
implanting manganese impurities in silver wires, we show that even a minute
concentration of magnetic impurities having a small Kondo temperature can lead
to a quasi saturation of over a broad temperature range, while
the resistance increase expected from the Kondo effect remains hidden by a
large background. We also measured the conductance of Aharonov-Bohm rings
fabricated using a very pure copper source and found that the amplitude of the
conductance oscillations increases strongly with magnetic field. This set
of experiments suggests that the frequently observed ``saturation'' of
in weakly disordered metallic thin films can be attributed to
spin-flip scattering from extremely dilute magnetic impurities, at a level
undetectable by other means.Comment: 16 pages, 11 figures, to be published in Physical Review
Is weak temperature dependence of electron dephasing possible?
The first-principle theory of electron dephasing by disorder-induced two
state fluctuators is developed. There exist two mechanisms of dephasing. First,
dephasing occurs due to direct transitions between the defect levels caused by
inelastic electron-defect scattering. The second mechanism is due to violation
of the time reversal symmetry caused by time-dependent fluctuations of the
scattering potential. These fluctuations originate from an interaction between
the dynamic defects and conduction electrons forming a thermal bath. The first
contribution to the dephasing rate saturates as temperature decreases. The
second contribution does not saturate, although its temperature dependence is
rather weak, . The quantitative estimates based on the
experimental data show that these mechanisms considered can explain the weak
temperature dependence of the dephasing rate in some temperature interval.
However, below some temperature dependent on the model of dynamic defects the
dephasing rate tends rapidly to zero. The relation to earlier studies of the
dephasing caused by the dynamical defects is discussed.Comment: 14 pages, 6 figures, submitted to PR
Mesoscopic Aharonov-Bohm oscillations in metallic rings
We study the amplitude of mesoscopic Aharonov-Bohm oscillations in
quasi-one-dimensional (Q1D) diffusive rings. We consider first the
low-temperature limit of a fully coherent sample. The variance of oscillation
harmonics is calculated as a function of the length of the leads attaching the
ring to reservoirs. We further analyze the regime of relatively high
temperatures, when the dephasing due to electron-electron interaction
suppresses substantially the oscillations. We show that the dephasing length
L_phi^AB governing the damping factor exp(-2pi R /L_phi^AB) of the oscillations
is parametrically different from the common dephasing length for the Q1D
geometry. This is due to the fact that the dephasing is governed by energy
transfers determined by the ring circumference 2pi R, making L_phi^AB
R-dependent.Comment: 16 pages, 4 figures, to appear in proceedings of NATO/Euresco
Conference "Fundamental Problems of Mesoscopic Physics: Interactions and
Decoherence", Granada (Spain), September 200
Quantum-Limited Measurement and Information in Mesoscopic Detectors
We formulate general conditions necessary for a linear-response detector to
reach the quantum limit of measurement efficiency, where the
measurement-induced dephasing rate takes on its minimum possible value. These
conditions are applicable to both non-interacting and interacting systems. We
assess the status of these requirements in an arbitrary non-interacting
scattering based detector, identifying the symmetries of the scattering matrix
needed to reach the quantum limit. We show that these conditions are necessary
to prevent the existence of information in the detector which is not extracted
in the measurement process.Comment: 13 pages, 1 figur
Conductance Peak Height Correlations for a Coulomb-Blockaded Quantum Dot in a Weak Magnetic Field
We consider statistical correlations between the heights of conductance peaks
corresponding to two different levels in a Coulomb-blockaded quantum dot.
Correlations exist for two peaks at the same magnetic field if the field does
not fully break time-reversal symmetry as well as for peaks at different values
of a magnetic field that fully breaks time-reversal symmetry. Our results are
also relevant to Coulomb-blockade conductance peak height statistics in the
presence of weak spin-orbit coupling in a chaotic quantum dot.Comment: 5 pages, 3 figures, REVTeX 4, accepted for publication in Phys. Rev.
Electron Dephasing in Mesoscopic Metal Wires
The low-temperature behavior of the electron phase coherence time,
, in mesoscopic metal wires has been a subject of controversy
recently. Whereas theory predicts that in narrow wires should
increase as as the temperature is lowered, many samples exhibit
a saturation of below about 1 K. We review here the experiments
we have performed recently to address this issue. In particular we emphasize
that in sufficiently pure Ag and Au samples we observe no saturation of
down to our base temperature of 40 mK. In addition, the measured
magnitude of is in excellent quantitative agreement with the
prediction of the perturbative theory of Altshuler, Aronov and Khmelnitskii. We
discuss possible explanations why saturation of is observed in
many other samples measured in our laboratory and elsewhere, and answer the
criticisms raised recently by Mohanty and Webb regarding our work.Comment: 14 pages, 3 figures; to appear in proceedings of conference
"Fundamental Problems of Mesoscopic Physics", Granada, Spain, 6-11 September,
200
- …
