17 research outputs found

    Tracking Growing Axons by Particle Filtering in 3D+t Fluorescent Two-Photon Microscopy Images

    Get PDF
    International audienceAnalyzing the behavior of axons in the developing nervous systems is essential for biologists to understand the biological mechanisms underlying how growing axons reach their target cells. The analysis of the motion patterns of growing axons requires detecting axonal tips and tracking their trajectories within complex and large data sets. When performed manually, the tracking task is arduous and time-consuming. To this end, we propose a tracking method, based on the particle filtering technique, to follow the traces of axonal tips that appear as small bright spots in the 3D+t fluorescent two-photon microscopy images exhibiting low signal-to-noise ratios (SNR) and complex background. The proposed tracking method uses multiple dynamic models in the proposal distribution to predict the positions of the growing axons. Furthermore, it incorporates object appearance, motion characteristics of the growing axons, and filament information in the computation of the observation model. The integration of these three sources prevents the tracker from being distracted by other objects that have appearances similar to the tracked objects, resulting in improved accuracy of recovered trajectories. The experimental results obtained from the microscopy images show that the proposed method can successfully estimate trajectories of growing axons, demonstrating its effectiveness even under the presence of noise and complex background

    Objective comparison of particle tracking methods

    Get PDF
    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers

    Inverse Dirichlet weighting enables reliable training of physics informed neural networks.

    No full text
    We characterize and remedy a failure mode that may arise from multi-scale dynamics with scale imbalances during training of deep neural networks, such as physics informed neural networks (PINNs). PINNs are popular machine-learning templates that allow for seamless integration of physical equation models with data. Their training amounts to solving an optimization problem over a weighted sum of data-fidelity and equation-fidelity objectives. Conflicts between objectives can arise from scale imbalances, heteroscedasticity in the data, stiffness of the physical equation, or from catastrophic interference during sequential training. We explain the training pathology arising from this and propose a simple yet effective inverse Dirichlet weighting strategy to alleviate the issue. We compare with Sobolev training of neural networks, providing the baseline of analytically epsilon-optimal training. We demonstrate the effectiveness of inverse Dirichlet weighting in various applications, including a multi-scale model of active turbulence, where we show orders of magnitude improvement in accuracy and convergence over conventional PINN training. For inverse modeling using sequential training, we find that inverse Dirichlet weighting protects a PINN against catastrophic forgetting

    Learning physically consistent differential equation models from data using group sparsity.

    No full text
    We propose a statistical learning framework based on group-sparse regression that can be used to (i) enforce conservation laws, (ii) ensure model equivalence, and (iii) guarantee symmetries when learning or inferring differential-equation models from data. Directly learning interpretable mathematical models from data has emerged as a valuable modeling approach. However, in areas such as biology, high noise levels, sensor-induced correlations, and strong intersystem variability can render data-driven models nonsensical or physically inconsistent without additional constraints on the model structure. Hence, it is important to leverage prior knowledge from physical principles to learn biologically plausible and physically consistent models rather than models that simply fit the data best. We present the group iterative hard thresholding algorithm and use stability selection to infer physically consistent models with minimal parameter tuning. We show several applications from systems biology that demonstrate the benefits of enforcing priors in data-driven modeling

    A software framework for the portable parallelization of particle-mesh simulations

    No full text
    We present a software framework for the transparent and portable parallelization of simulations using particle-mesh methods. Particles are used to transport physical properties and a mesh is required in order to reinitialize the distorted particle locations, ensuring the convergence of the method. Field quantities are computed on the particles using fast multipole methods or by discretizing and solving the governing equations on the mesh. This combination of meshes and particles presents a challenging set of parallelization issues. The present library addresses these issues for a wide range of applications, and it enables orders of magnitude increase in the number of computational elements employed in particle methods. We demonstrate the performance and scalability of the library on several problems, including the first-ever billion particle simulation of diffusion in real biological cell geometries

    Intuitive Visualization and Querying of Cell Motion

    No full text

    Deconvolving Active Contours for Fluorescence Microscopy Images

    Full text link
    We extend active contours to constrained iterative deconvolution by replacing the external energy function with a model-based likelihood. This enables sub-pixel estimation of the outlines of diffractionlimited objects, such as intracellular structures, from fluorescence micrographs. We present an efficient algorithm for solving the resulting optimization problem and robustly estimate object outlines. We benchmark the algorithm on artificial images and assess its practical utility on fluorescence micrographs of the Golgi and endosomes in live cells

    Receptor Concentration and Diffusivity Control Multivalent Binding of Sv40 to Membrane Bilayers

    No full text
    Incoming Simian Virus 40 particles bind to their cellular receptor, the glycolipid GM1, in the plasma membrane and thereby induce membrane deformation beneath the virion leading to endocytosis and infection. Efficient membrane deformation depends on receptor lipid structure and the organization of binding sites on the internalizing particle. To determine the role of receptor diffusion, concentration and the number of receptors required for stable binding in this interaction, we analyze the binding of SV40 to GM1 in supported membrane bilayers by computational modeling based on experimental data. We measure the diffusion rates of SV40 virions in solution by fluorescence correlation spectroscopy and of the receptor in bilayers by single molecule tracking. Quartz-crystal microbalance with dissipation (QCM-D) is used to measure binding of SV40 virus-like particles to bilayers containing the viral receptor GM1. We develop a phenomenological stochastic dynamics model calibrated against this data, and use it to investigate the early events of virus attachment to lipid membranes. Our results indicate that SV40 requires at least 4 attached receptors to achieve stable binding. We moreover find that receptor diffusion is essential for the establishment of stable binding over the physiological range of receptor concentrations and that receptor concentration controls the mode of viral motion on the target membrane. Our results provide quantitative insight into the initial events of virus-host interaction at the nanoscopic level. © 2013 Szklarczyk et al.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore