41 research outputs found

    Fine structure of Vavilov-Cherenkov radiation near the Cherenkov threshold

    Full text link
    We analyze the Vavilov-Cherenkov radiation (VCR) in a dispersive nontransparent dielectric air-like medium both below and above the Cherenkov threshold, in the framework of classical electrodynamics. It is shown that the transition to the subthreshold energies leads to the destruction of electromagnetic shock waves and to the sharp reduction of the frequency domain where VCR is emitted. The fine wake-like structure of the Vavilov-Cherenkov radiation survives and manifests the existence of the subthreshold radiation in the domain of anomalous dispersion. These domains can approximately be defined by the two phenomenological parameters of the medium, namely, the effective frequency of oscillators and the damping describing an interaction with the other degrees of freedom.Comment: 9 pages, 6 figure

    The quantum vacuum at the foundations of classical electrodynamics

    Get PDF
    In the classical theory of electromagnetism, the permittivity and the permeability of free space are constants whose magnitudes do not seem to possess any deeper physical meaning. By replacing the free space of classical physics with the quantum notion of the vacuum, we speculate that the values of the aforementioned constants could arise from the polarization and magnetization of virtual pairs in vacuum. A classical dispersion model with parameters determined by quantum and particle physics is employed to estimate their values. We find the correct orders of magnitude. Additionally, our simple assumptions yield an independent estimate for the number of charged elementary particles based on the known values of the permittivity and the permeability, and for the volume of a virtual pair. Such interpretation would provide an intriguing connection between the celebrated theory of classical electromagnetism and the quantum theory in the weak field limit.Comment: Accepted in Applied Physics B: Special Issue for the 50 years of the laser. Comments are welcome

    The generalized MIC-Kepler system

    Full text link
    This paper deals with dynamical system that generalizes the MIC-Kepler system. It is shown that the Schr\"{o}dinger equation for this generalized MIC-Kepler system can be separated in spherical and parabolic coordinates. The spectral problem in spherical and parabolic coordinates is solved.Comment: 8 page

    The Higgs field and the ultraviolet behaviour of the vortex operator in 2+1 dimensions

    Full text link
    We calculate the change in the ultraviolet behaviour of the vortex operator due to the presence of dynamical Higgs field in both 2+1 dimensional QED and the 2+1 dimensional Georgi-Glashow model. We find that in the QED case the presence of the Higgs field leads at the one loop level to power like correction to the propagator of the vortex operator. On the other hand, in the Georgi-Glashow model, the adjoint Higgs at one loop has no affect on the vortex propagator. Thus, as long as the mass of the Higgs field is much larger than the gauge coupling constant, the ultraviolet behaviour of the vortex operator in the Georgi-Glashow model is independent of the Higgs mass.Comment: 14 page

    Mass dependence of spectral and angular distributions of Cherenkov radiation from relativistic isotopes in solid radiators and its possible application as mass selector

    Get PDF
    The first proof of principle experiment with a prototype of a Time-of-Flight (TOF) - Cherenkov detector of relativistic heavy ions (RHI) exploiting a liquid Iodine Naphthalene radiator has been performed at Cave C at GSI (Darmstadt, Germany). A conceptual design for a liquid Cherenkov detector was proposed as a prototype for the future TOF measurements at the SuperFRS by detection of total number of Cherenkov photons. The ionization energy loss of RHI in a liquid radiator decreases only slightly this number, while in a solid radiator changes sufficiently not the total number of ChR photons, but ChR angular and spectral distributions. By means of computer simulations, we showed that these distributions are very sensitive to the isotope mass, due to different stopping powers of isotopes with initial equal relativistic factors. The results of simulations for light (Li, Be) and heavy (Xe) isotopes at 500-1000 MeV/u are presented indicating the possibility to use the isotopic effect in ChR of RHI as the mass selector

    Interface electronic states and boundary conditions for envelope functions

    Full text link
    The envelope-function method with generalized boundary conditions is applied to the description of localized and resonant interface states. A complete set of phenomenological conditions which restrict the form of connection rules for envelope functions is derived using the Hermiticity and symmetry requirements. Empirical coefficients in the connection rules play role of material parameters which characterize an internal structure of every particular heterointerface. As an illustration we present the derivation of the most general connection rules for the one-band effective mass and 4-band Kane models. The conditions for the existence of Tamm-like localized interface states are established. It is shown that a nontrivial form of the connection rules can also result in the formation of resonant states. The most transparent manifestation of such states is the resonant tunneling through a single-barrier heterostructure.Comment: RevTeX4, 11 pages, 5 eps figures, submitted to Phys.Rev.

    In-medium QCD and Cherenkov gluons

    Full text link
    The equations of in-medium gluodynamics are proposed. Their classical lowest order solution is explicitly shown for a color charge moving with constant speed. For nuclear permittivity larger than 1 it describes emission of Cherenkov gluons resembling results of classical electrodynamics. The choice of nuclear permittivity and Lorentz-invariance of the problem are discussed. Effects induced by the transversely and longitudinally moving (relative to the collision axis) partons at LHC energies are described.Comment: 13 p., misprints correcte
    corecore