32 research outputs found

    Studies and application of bent crystals for beam steering at 70-GeV IHEP accelerator

    Full text link
    This report overviews studies accomplished in the U70 proton synchrotron of IHEP-Protvino during the recent two decades. Major attention is paid to a routine application of bent crystals for beam extraction from the machine. It has been confirmed experimentally that efficiency of beam extraction with a crystal deflector of around 85% is well feasible for a proton beam with intensity up to 1012 protons per cycle. Another trend is to use bent crystals for halo collimation in a high energy collider. New promising options emerge for, say, LHC and ILC based on the "volume reflection" effect, which has been discovered recently in machine study runs at U70 of IHEP (50 GeV) and SPS of CERN (400 GeV).Comment: 12 pages, 14 figure

    Emission of photons by positrons channeled in single crystals near an energy of 100 GeV

    No full text
    Emission by 120-GeV positrons in the channeling regime in the (011) plane of a silicon single crystal has been considered. Trajectories of positrons under different initial conditions have been calculated within the theory of nonlinear oscillations. The amplitude distribution function of channeled particles has been determined taking into account the nonlinearity of their motion. The intensity of radiation under various initial conditions has been calculated by two different methods. These results can be useful for comparison with experimental data at energies of positrons beginning with 100 GeV and higher

    Crystal collimation studies at the Tevatron (T-980)

    No full text
    Bent-crystal channeling is a technique with a potential to increase beam-halo collimation efficiency in high-energy colliders. First measurements at the Tevatron in 2005 have shown that using a thin silicon crystal to deflect the 1-TeV proton beam halo onto a secondary collimator improves the system performance by reducing the machine impedance, beam losses in the collider detectors and irradiation of the superconducting magnets, all in agreement with simulations. Recent results, obtained with an improved goniometer and enhanced beam diagnostics, are reported here for dedicated beam studies and first full collider stores along with simulation results and plans for substantial enhancement of the T-980 experimental setup

    Measurement of the dechanneling length for high-energy negative pions

    No full text
    We studied the dechanneling length of 150 GeV/c π− interacting with a short bent silicon crystal. Dechanneling length measures the rate and the strength of incoherent interactions of channeled particles in a crystal. The mechanism of dechanneling of negatively charged particles has been elucidated through simulation and experiment. It was found that the dechanneling length for negative particles is comparable to the nuclear dechanneling length for positive charges. Indeed, dechanneling of negative particles occurs as a result of incoherent interactions with the nuclei because the trajectories of such particles always intersect atomic planes, explaining the lower channeling efficiency for such particles. Obtained results can be useful for the design of crystals for manipulating high-energy negative particle beams through channeling
    corecore