18 research outputs found

    Is It Rational to Assume that Infants Imitate Rationally? A Theoretical Analysis and Critique

    Get PDF
    It has been suggested that preverbal infants evaluate the efficiency of others' actions (by applying a principle of rational action) and that they imitate others' actions rationally. The present contribution presents a conceptual analysis of the claim that preverbal infants imitate rationally. It shows that this ability rests on at least three assumptions: that infants are able to perceive others' action capabilities, that infants reason about and conceptually represent their own bodies, and that infants are able to think counterfactually. It is argued that none of these three abilities is in place during infancy. Furthermore, it is shown that the idea of a principle of rational action suffers from two fallacies. As a consequence, is it suggested that it is not rational to assume that infants imitate rationally. Copyright (C) 2012 S. Karger AG, Base

    Quantum Griffiths effects and smeared phase transitions in metals: theory and experiment

    Full text link
    In this paper, we review theoretical and experimental research on rare region effects at quantum phase transitions in disordered itinerant electron systems. After summarizing a few basic concepts about phase transitions in the presence of quenched randomness, we introduce the idea of rare regions and discuss their importance. We then analyze in detail the different phenomena that can arise at magnetic quantum phase transitions in disordered metals, including quantum Griffiths singularities, smeared phase transitions, and cluster-glass formation. For each scenario, we discuss the resulting phase diagram and summarize the behavior of various observables. We then review several recent experiments that provide examples of these rare region phenomena. We conclude by discussing limitations of current approaches and open questions.Comment: 31 pages, 7 eps figures included, v2: discussion of the dissipative Ising chain fixed, references added, v3: final version as publishe

    Clustering identifies endotypes of traumatic brain injury in an intensive care cohort: a CENTER-TBI study

    Get PDF
    Background While the Glasgow coma scale (GCS) is one of the strongest outcome predictors, the current classification of traumatic brain injury (TBI) as ‘mild’, ‘moderate’ or ‘severe’ based on this fails to capture enormous heterogeneity in pathophysiology and treatment response. We hypothesized that data-driven characterization of TBI could identify distinct endotypes and give mechanistic insights. Methods We developed an unsupervised statistical clustering model based on a mixture of probabilistic graphs for presentation (< 24 h) demographic, clinical, physiological, laboratory and imaging data to identify subgroups of TBI patients admitted to the intensive care unit in the CENTER-TBI dataset (N = 1,728). A cluster similarity index was used for robust determination of optimal cluster number. Mutual information was used to quantify feature importance and for cluster interpretation. Results Six stable endotypes were identified with distinct GCS and composite systemic metabolic stress profiles, distinguished by GCS, blood lactate, oxygen saturation, serum creatinine, glucose, base excess, pH, arterial partial pressure of carbon dioxide, and body temperature. Notably, a cluster with ‘moderate’ TBI (by traditional classification) and deranged metabolic profile, had a worse outcome than a cluster with ‘severe’ GCS and a normal metabolic profile. Addition of cluster labels significantly improved the prognostic precision of the IMPACT (International Mission for Prognosis and Analysis of Clinical trials in TBI) extended model, for prediction of both unfavourable outcome and mortality (both p < 0.001). Conclusions Six stable and clinically distinct TBI endotypes were identified by probabilistic unsupervised clustering. In addition to presenting neurology, a profile of biochemical derangement was found to be an important distinguishing feature that was both biologically plausible and associated with outcome. Our work motivates refining current TBI classifications with factors describing metabolic stress. Such data-driven clusters suggest TBI endotypes that merit investigation to identify bespoke treatment strategies to improve care

    Strong disorder RG approach – a short review of recent developments

    No full text
    The strong disorder RG approach for random systems has been extended in many new directions since our previous review of 2005 [F. Igloi, C. Monthus, Phys. Rep. 412, 277 (2005)]. The aim of the present colloquium paper is thus to give an overview of these various recent developments. In the field of quantum disordered models, recent progress concern infinite disorder fixed points for short-ranged models in higher dimensions d > 1, strong disorder fixed points for long-ranged models, scaling of the entanglement entropy in critical ground-states and after quantum quenches, the RSRG-X procedure to construct the whole set excited stated and the RSRG-t procedure for the unitary dynamics in many-body-localized phases, the Floquet dynamics of periodically driven chains, the dissipative effects induced by the coupling to external baths, and Anderson Localization models. In the field of classical disordered models, new applications include the contact process for epidemic spreading, the strong disorder renormalization procedure for general master equations, the localization properties of random elastic networks, and the synchronization of interacting non-linear dissipative oscillators. Application of the method for aperiodic (or deterministic) disorder is also mentioned

    Strong disorder RG approach – a short review of recent developments

    No full text
    corecore