5 research outputs found

    ΠšΡ€Π°Π½ΠΈΠΎΡ†Π΅Ρ€Π΅Π±Ρ€Π°Π»ΡŒΠ½Π°Ρ гипотСрмия - эффСктивноС срСдство Π½Π΅ΠΉΡ€ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ†ΠΈΠΈ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚ΠΎΠΌ ΠΌΠΎΠ·Π³Π°

    No full text
    Ischemic stroke (IS) is one of the main causes of death and disability of the Russian working population and at present there are no known drugs with a proven neuroprotective effect. The purpose of our study was to evaluate the clinical efficacy of craniocerebral hypothermia (CCH) in the complex therapy of IS and its effect when used in long-term therapy. Material and methods. 113 patients were treated, which were divided into the experimental group (CCH administered) and control group (without CCH). To evaluate the temperature of the brain, a non-invasive microwave thermometer was used that could record the average temperature in a given tissue volume. The degree of neurologic deficiency was evaluated using the NIHSS scale, the degree of disability at the 90day from the onset of the disease β€” according to the modified Rankin scale. Results. In the experimental group, there was a marked decrease in the level of neurological deficit in the acute period after 24 hours of CCH (p<0.01). Also, there was a decrease in the degree of disability by 0.6β€”0.9 points in groups with CCH. The mortality on the 90th day from the onset of the disease in the group of patients with severe and extremely severe neurologic deficit decreased by 28% (p<0.01), in the group of patients with a deficit of less than 13 points in the NIHSS scale, there were no significant differences. CCH has a pronounced therapeutic effect when applied in combination with standard treatment. It can be assumed that this effect is a consequence of the decrease in brain edema and the protection of the penumbra zone. Conclusions. CCH can be considered as an effective technique for treating patients with IS and is recommended for use in its complex therapy.Π˜Π½Ρ„Π°Ρ€ΠΊΡ‚ ΠΌΠΎΠ·Π³Π° являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· основных ΠΏΡ€ΠΈΡ‡ΠΈΠ½ смСрти ΠΈ ΠΈΠ½Π²Π°Π»ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ работоспособного насСлСния России, ΠΈ Π΄ΠΎ настоящСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² ΠΌΠΈΡ€Π΅ Π½Π΅Ρ‚ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² с Π΄ΠΎΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΌ Π½Π΅ΠΉΡ€ΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ эффСктом. ЦСль исслСдования β€” ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΊΠ»ΠΈΠ½ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΡ€Π°Π½ΠΈΠΎΡ†Π΅Ρ€Π΅Π±Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π³ΠΈΠΏΠΎΡ‚Π΅Ρ€ΠΌΠΈΠΈ (ΠšΠ¦Π“) Π² остром ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚Π° ΠΌΠΎΠ·Π³Π° ΠΈ Π΅Π΅ влияниС Π½Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ лСчСния Π² ΠΎΡ‚Π΄Π°Π»Π΅Π½Π½ΠΎΠΌ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ 113 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ Β«ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚ ΠΌΠΎΠ·Π³Π°Β», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… распрСдСлили Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹. 1-я А Π³Ρ€ΡƒΠΏΠΏΠ° (n=20), основная β€” ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ с Π»Π΅Π³ΠΊΠΎΠΉ ΠΈ срСднСй ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ нСврологичСских Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ (ΠΏΠΎ шкалС NIHSS 8β€”12 Π±Π°Π»Π»ΠΎΠ²), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ наряду со стандартной Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠ΅ΠΉ Π² 1-Π΅ сутки лСчСния Π½Π°Ρ‡ΠΈΠ½Π°Π»ΠΈ сСанс ΠšΠ¦Π“; 1-я Π‘ Π³Ρ€ΡƒΠΏΠΏΠ° (n=8), ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ β€” ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ с Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠΉ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ нСврологичСских Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΡƒΡŽ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΡŽ Π±Π΅Π· ΠšΠ¦Π“; 2-я А Π³Ρ€ΡƒΠΏΠΏΠ° (n=39), основная β€” ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ с тяТСлыми нСврологичСскими Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ ΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ ΠΊΡ€Π°ΠΉΠ½Π΅ΠΉ стСпСни тяТСсти (ΠΏΠΎ шкалС NIHSS 13 Π±Π°Π»Π»ΠΎΠ² ΠΈ Π±ΠΎΠ»Π΅Π΅), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ наряду со стандартной Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΠ΅ΠΉ Π² 1-Π΅ сутки лСчСния Π½Π°Ρ‡ΠΈΠ½Π°Π»ΠΈ сСанс ΠšΠ¦Π“; 2-я Π‘ Π³Ρ€ΡƒΠΏΠΏΠ° (n=36), ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Π°Ρ β€” ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ с Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠΉ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ нСврологичСских Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΡ‚Π°Π½Π΄Π°Ρ€Ρ‚Π½ΡƒΡŽ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΡ‚Π΅Ρ€Π°ΠΏΠΈΡŽ Π±Π΅Π· ΠšΠ¦Π“. Для ΠΎΡ†Π΅Π½ΠΊΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° использовали Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹ΠΉ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ диагностичСский Ρ€Π°Π΄ΠΈΠΎΡ‚Π΅Ρ€ΠΌΠΎΠΌΠ΅Ρ‚Ρ€ РВМ-01-Π Π­Π‘, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ Ρ€Π΅Π³ΠΈΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΡΡ€Π΅Π΄Π½ΡŽΡŽ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ Π² объСмС Ρ‚ΠΊΠ°Π½Π΅ΠΉ. Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ нСврологичСского Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° исслСдовали ΠΏΠΎ шкалС NIHSS, ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ΠΈΠ½Π²Π°Π»ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° 90-ΠΉ дСнь ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° заболСвания β€” ΠΏΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ шкалС Рэнкина. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π£ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² основных Π³Ρ€ΡƒΠΏΠΏ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ΅ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ уровня нСврологичСского Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° Π² остром ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΡƒΠΆΠ΅ Ρ‡Π΅Ρ€Π΅Π· 24 Ρ‡ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° провСдСния ΠšΠ¦Π“ (p<0,01) ΠΈ Π² ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ β€” сниТСниС стСпСни ΠΈΠ½Π²Π°Π»ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ Π½Π° 0,6β€”0,9 Π±Π°Π»Π»Π°. Π›Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π½Π° 90-ΠΉ дСнь ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° заболСвания Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с тяТСлой ΠΈ ΠΊΡ€Π°ΠΉΠ½Π΅ тяТСлой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ нСврологичСского Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° снизилась Π½Π° 28% (p<0,01), Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ΠΎΠΌ ΠΌΠ΅Π½Π΅Π΅ 13 Π±Π°Π»Π»ΠΎΠ² ΠΏΠΎ шкалС NIHSS статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ Π½Π΅ выявлСно. ΠœΠ΅Ρ‚ΠΎΠ΄ ΠšΠ¦Π“ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌ тСрапСвтичСским эффСктом ΠΏΡ€ΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π² комплСксС со стандартным Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ. МоТно ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ этот эффСкт обусловлСн ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΎΡ‚Π΅ΠΊΠ° Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° ΠΈ стабилизациСй Π·ΠΎΠ½Ρ‹ ΠΏΠ΅Π½ΡƒΠΌΠ±Ρ€Ρ‹. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠšΠ¦Π“ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ эффСктивный ΠΌΠ΅Ρ‚ΠΎΠ΄ лСчСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΈΠ½Ρ„Π°Ρ€ΠΊΡ‚ΠΎΠΌ ΠΌΠΎΠ·Π³Π° ΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Ρ‚ΡŒ для примСнСния Π² комплСксной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ этого заболСвания

    Carbon window soft x-ray imaging using multilayer optics

    No full text
    The paper deals with the recent results of the experiments on soft X-ray imaging of various carbon-containing objects: biological samples, artificial carbon fibres, graphite slices, etc. The working wavelength was chosen to be 4.5 nm due to high penetration ability of these soft X-rays in the carbon materials. The experimental set-up included: laser plasma Xray source (generated with the 2nd harmonics of Nd:YAG laser), scandium-based thin-film filter and highly reflective spherical multilayer mirror. The Co/C multilayer's reflectivity was measured to be about 15 % at normal incidence that was high enough to produce soft X-ray images using single nanosecond exposure. The work demonstrates a possibility to produce high contrast images outside "water window" region for study of relatively thick (tens of microns) unstained samples that may lead to new fields of applications of the soft x-ray microscopy
    corecore