2,589 research outputs found
Conceptual Design of a New Large Superconducting Toroid for IAXO, the New International AXion Observatory
The International AXion Observatory (IAXO) will incorporate a new generation
detector for axions, a hypothetical particle, which was postulated to solve one
of the puzzles arising in the standard model of particle physics, namely the
strong CP problem. The new IAXO experiment is aiming at achieving a sensitivity
to the coupling between axions and photons of one order of magnitude beyond the
limits of the current state-of-the-art detector, represented by the CERN Axion
Solar Telescope (CAST). The IAXO detector relies on a high-magnetic field
distributed over a very large volume to convert solar axions into x-ray
photons. Utilizing the designs of the ATLAS barrel and end-cap toroids, a large
superconducting toroidal magnet is currently being designed at CERN to provide
the required magnetic field. The new toroid will be built up from eight, one
meter wide and 20 m long, racetrack coils. The toroid is sized about 4 m in
diameter and 22 m in length. It is designed to realize a peak magnetic field of
5.4 T with a stored energy of 500 MJ. The magnetic field optimization process
to arrive at maximum detector yield is described. In addition, force and stress
calculations are performed to select materials and determine their structure
and sizing. Conductor dimensionality, quench protection and the cryogenic
design are dealt with as well.Comment: 5 pages, 5 figures. To be published in IEEE Trans. Appl. Supercond.
23 (ASC 2012 conference special issue
New Superconducting Toroidal Magnet System for IAXO, the International AXion Observatory
Axions are hypothetical particles that were postulated to solve one of the
puzzles arising in the standard model of particle physics, namely the strong CP
(Charge conjugation and Parity) problem. The new International AXion
Observatory (IAXO) will incorporate the most promising solar axions detector to
date, which is designed to enhance the sensitivity to the axion-photon coupling
by one order of magnitude beyond the limits of the current state-of-the-art
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions into X-ray photons. Inspired by the successful realization of the ATLAS
barrel and end-cap toroids, a very large superconducting toroid is currently
designed at CERN to provide the required magnetic field. This toroid will
comprise eight, one meter wide and twenty one meter long, racetrack coils. The
system is sized 5.2 m in diameter and 25 m in length. Its peak magnetic field
is 5.4 T with a stored energy of 500 MJ. The magnetic field optimization
process to arrive at maximum detector yield is described. In addition,
materials selection and their structure and sizing has been determined by force
and stress calculations. Thermal loads are estimated to size the necessary
cryogenic power and the concept of a forced flow supercritical helium based
cryogenic system is given. A quench simulation confirmed the quench protection
scheme.Comment: Accepted for publication in Adv. Cryo. Eng. (CEC/ICMC 2013 special
issue
The Superconducting Toroid for the New International AXion Observatory (IAXO)
IAXO, the new International AXion Observatory, will feature the most
ambitious detector for solar axions to date. Axions are hypothetical particles
which were postulated to solve one of the puzzles arising in the standard model
of particle physics, namely the strong CP (Charge conjugation and Parity)
problem. This detector aims at achieving a sensitivity to the coupling between
axions and photons of one order of magnitude beyond the limits of the current
detector, the CERN Axion Solar Telescope (CAST). The IAXO detector relies on a
high-magnetic field distributed over a very large volume to convert solar
axions to detectable X-ray photons. Inspired by the ATLAS barrel and end-cap
toroids, a large superconducting toroid is being designed. The toroid comprises
eight, one meter wide and twenty one meters long racetrack coils. The assembled
toroid is sized 5.2 m in diameter and 25 m in length and its mass is about 250
tons. The useful field in the bores is 2.5 T while the peak magnetic field in
the windings is 5.4 T. At the operational current of 12 kA the stored energy is
500 MJ. The racetrack type of coils are wound with a reinforced Aluminum
stabilized NbTi/Cu cable and are conduction cooled. The coils optimization is
shortly described as well as new concepts for cryostat, cold mass, supporting
structure and the sun tracking system. Materials selection and sizing,
conductor, thermal loads, the cryogenics system and the electrical system are
described. Lastly, quench simulations are reported to demonstrate the system's
safe quench protection scheme.Comment: To appear in IEEE Trans. Appl. Supercond. MT 23 issue. arXiv admin
note: substantial text overlap with arXiv:1308.2526, arXiv:1212.463
The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors
The stability of high-current superconductors is challenging in the design of
superconducting magnets. When the stability requirements are fulfilled, the
protection against a quench must still be considered. A main factor in the
design of quench protection systems is the resistance growth rate in the magnet
following a quench. The usual method for determining the resistance growth in
impregnated coils is to calculate the longitudinal velocity with which the
normal zone propagates in the conductor along the coil windings.
Here, we present a 2D numerical model for predicting the normal zone
propagation velocity in Al stabilized Rutherford NbTi cables with large cross
section. By solving two coupled differential equations under adiabatic
conditions, the model takes into account the thermal diffusion and the current
redistribution process following a quench. Both the temperature and magnetic
field dependencies of the superconductor and the metal cladding materials
properties are included. Unlike common normal zone propagation analyses, we
study the influence of the thickness of the cladding on the propagation
velocity for varying operating current and magnetic field.
To assist in the comprehension of the numerical results, we also introduce an
analytical formula for the longitudinal normal zone propagation. The analysis
distinguishes between low-current and high-current regimes of normal zone
propagation, depending on the ratio between the characteristic times of thermal
and magnetic diffusion. We show that above a certain thickness, the cladding
acts as a heat sink with a limited contribution to the acceleration of the
propagation velocity with respect to the cladding geometry. Both numerical and
analytical results show good agreement with experimental data.Comment: To be published in Physics Procedia (ICEC 25 conference special
issue
Enrichment of the HR 8799 planets by minor bodies and dust
In the Solar System, minor bodies and dust deliver various materials to
planetary surfaces. Several exoplanetary systems are known to host inner and
outer belts, analogues of the main asteroid belt and the Kuiper belt. We study
the possibility that exominor bodies and exodust deliver volatiles and
refractories to the exoplanets in the system HR8799 by performing N-body
simulations. The model consists of the host star, four giant planets (HR8799 e,
d, c, and b), 650000 test particles representing the inner belt, and 1450000
test particles representing the outer belt. Moreover we modelled dust
populations that originate from both belts. Within a million years, the two
belts evolve towards the expected dynamical structure (also derived in other
works), where mean-motion resonances with the planets carve the analogues of
Kirkwood gaps. We find that, after this point, the planets suffer impacts by
objects from the inner and outer belt at rates that are essentially constant
with time, while dust populations do not contribute significantly to the
delivery process. We convert the impact rates to volatile and refractory
delivery rates using our best estimates of the total mass contained in the
belts and their volatile and refractory content. Over their lifetime, the four
giant planets receive between and 10^{-3}M_\bigoplus of material
from both belts. The total amount of delivered volatiles and refractories,
{5\times10^{-3}\textrm{M}_\bigoplus}, is small compared to the total mass of
the planets, 11\times10^{3}\textrm{M}_\bigoplus. However, if the planets were
formed to be volatile-rich, their exogenous enrichment in refractory material
may well be significant and observable, for example with JWST-MIRI. If
terrestrial planets exist within the snow line of the system, volatile delivery
would be an important astrobiological mechanism and may be observable as
atmospheric trace gases.Comment: 11 pages, 8 figures, accepted for publication in
Astronomy&Astrophysic
Precision Subsampling System for Mars Surface Missions
The ability to analyze heterogeneous rock samples at fine spatial scales would represent a powerful addition to our planetary in situ analytical toolbox. This is particularly true for Mars, where the signatures of past environments and, potentially, habitability are preserved in chemical and morphological variations across sedimentary layers and among mineral pr.ases in a given rock specimen. On Earth, microbial life often associates with surfaces at the interface of chemical nutrients, and ultimately retains sub-millimeter to millimeter-scale layer confinement in fossilization. On Mars, and possibly other bodies, trace chemical markers (elemental, organic/molecular, isotopic, chiral, etc.) and fine-scale morphological markers (e.g., micro-fossils) may he too subtle, degraded, or ambiguous to be detected, using miniaturized instrumentation, without some concentration or isolation. This is because (i) instrument sensitivity may not be high enough to detect trace markers in bulk averages; and (ii) instrument s~lectiviry may not be sufficient to distinguish such markers from interfering/counteracting signals from the bulk. Moreover from a fundamental chemostratigraphic perspective there would be a great benefit to assessing specific chemical and stable isotopic gradients, over millimeter-to-centimeter scales and beyond, with higher precision than currently possible in situ. We have developed a precision subsampling system (PSS) that addresses this need while remaining relatively flexible to a variety of instruments that may take advantage of the capability on future missions. The PSS is relevant to a number of possible lander/rover missions, especially Mars Sample Return. Our specific PSS prototype is undergoing testing under Mars ambient conditions, on a variety of natural analog rocks and rock drill cores, using a set of complementary flight-compatible measurement techniques. The system is available for testing with other contact instruments that may benefit from precision sampling
delta C-13 Analysis of Mars Analog Carbonates Using Evolved Gas Cavity - Ringdown Spectrometry on the 2010 Arctic Mars Analog Svalbard Expedition (AMASE)
The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using instrumentation and techniques in development for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). The Sample Analysis at Mars (SAM) instrument suite, which will fly on MSL, was developed at Goddard Space Flight Center (GSFC), together with several partners. SAM consists of a quadrupole mass spectrometer (QMS), a gas chromatograph CGC), and a tunable laser spectrometer (TLS), which all analyze gases created by evolved gas analysis (EGA). The two sites studied represent "biotic" and "abiotic" analogs; the "biotic" site being the Knorringfjell fossil methane seep, and the "abiotic" site being the basaltic Sigurdfjell vent complex. The data presented here represent experiments to measure the carbon isotopic composition of carbonates from these two analogs using evolved gas analysis coupled with a commercial cavity ringdown CO2 isotopic analyzer (Picarro) as a proxy for the TLS on SAM
Optimization of the Kinematic Chain of the Thumb for a Hand Prosthesis Based on the Kapandji Opposition Test
Ponènica presentada a International Symposium on Computer Methods in Biomechanics and Biomedical Engineering - CMBBE 2019The thumb plays a key role in the performance of the hand for grasp-ing and manipulating objects. In artificial hands the complex thumb’s kinematic chain (TKC) is simplified and its five degrees of freedom are reduced to only one or two with the consequent loss of dexterity of the hand. The Kapandji op-position test (KOT) has been clinically used in pathological human hands for evaluating the thumb opposition and it has also been employed in some previ-ous studies as reference for the design of the TKC in artificial hands, but with-out a clearly stated methodology. Based on this approaches, in this study we present a computational method to optimize the whole TKC (base placement, link lengths and joint orientation angles) of an artificial hand based on its per-formance in the KOT. The cost function defined for the optimization (MPE) is a weighted mean position error when trying to reproduce the KOT postures and can be used also as a metric to quantify thumb opposition in the hand. As a case study, the method was applied to the improvement of the TKC of an artificial hand developed by the authors and the MPE was reduced to near one third of that of the original design, increasing significantly the number of reachable po-sitions in the KOT. The metric proposed based on the KOT can be used directly or in combination with other to improve the kinematic chain of artificial hands
Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis
Methane plumes in the martian atmosphere have been detected using Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. To date, none of these phenomena have been found to reliably correlate with the detection of methane plumes. An additional source exists, however: meteor showers could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, depositing freshly disaggregated meteor shower material in a regional concentration. The material generates methane via UV photolysis, resulting in a localized "plume" of short-lived methane
- …