186 research outputs found

    Effect of processing by femtosecond pulsed laser on mechanical properties of submicrocrystalline titanium

    Get PDF
    Effect of femtosecond laser processing on mechanical properties of plates made of submicrocrystalline VT1-0 titanium alloy is studied using active deformation and fatigue testing involving cantilever bendin

    Future of superheavy element research: Which nuclei could be synthesized within the next few years?

    Full text link
    Low values of the fusion cross sections and very short half-lives of nuclei with Z>>120 put obstacles in synthesis of new elements. Different nuclear reactions (fusion of stable and radioactive nuclei, multi-nucleon transfers and neutron capture), which could be used for the production of new isotopes of superheavy (SH) elements, are discussed in the paper. The gap of unknown SH nuclei, located between the isotopes which were produced earlier in the cold and hot fusion reactions, can be filled in fusion reactions of 48^{48}Ca with available lighter isotopes of Pu, Am, and Cm. Cross sections for the production of these nuclei are predicted to be rather large, and the corresponding experiments can be easily performed at existing facilities. For the first time, a narrow pathway is found to the middle of the island of stability owing to possible β+\beta^+-decay of SH isotopes which can be formed in ordinary fusion reactions of stable nuclei. Multi-nucleon transfer processes at near barrier collisions of heavy (and very heavy, U-like) ions are shown to be quite realistic reaction mechanism allowing us to produce new neutron enriched heavy nuclei located in the unexplored upper part of the nuclear map. Neutron capture reactions can be also used for the production of the long-living neutron rich SH nuclei. Strong neutron fluxes might be provided by pulsed nuclear reactors and by nuclear explosions in laboratory conditions and by supernova explosions in nature. All these possibilities are discussed in the paper.Comment: An Invited Plenary Talk given by Valeriy I. Zagrebaev at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Electron-phonon scattering at the intersection of two Landau levels

    Get PDF
    We predict a double-resonant feature in the magnetic field dependence of the phonon-mediated longitudinal conductivity σxx\sigma_{xx} of a two-subband quasi-two-dimensional electron system in a quantizing magnetic field. The two sharp peaks in σxx\sigma_{xx} appear when the energy separation between two Landau levels belonging to different size-quantization subbands is favorable for acoustic-phonon transitions. One-phonon and two-phonon mechanisms of electron conductivity are calculated and mutually compared. The phonon-mediated interaction between the intersecting Landau levels is considered and no avoided crossing is found at thermal equilibrium.Comment: 13 pages, 8 figure

    Landau damping in thin films irradiated by a strong laser field

    Full text link
    The rate of linear collisionless damping (Landau damping) in a classical electron gas confined to a heated ionized thin film is calculated. The general expression for the imaginary part of the dielectric tensor in terms of the parameters of the single-particle self-consistent electron potential is obtained. For the case of a deep rectangular well, it is explicitly calculated as a function of the electron temperature in the two limiting cases of specular and diffuse reflection of the electrons from the boundary of the self-consistent potential. For realistic experimental parameters, the contribution of Landau damping to the heating of the electron subsystem is estimated. It is shown that for films with a thickness below about 100 nm and for moderate laser intensities it may be comparable with or even dominate over electron-ion collisions and inner ionization.Comment: 15 pages, 2 figure

    Resource-efficient low-loss four-channel active demultiplexer for single photons

    Full text link
    We report a design and implementation of a resource-efficient spatial demultiplexer which produces 4 indistinguishable photons with efficiency of 39.7% per channel. Our scheme is based on a free-space storage/delay line which accumulates 4 photons and releases them by a controlled polarization rotation using a single Pockels cell.Comment: 8 pages, 7 figure
    corecore