62 research outputs found

    Impact of farmers’ practices and seed systems on the genetic structure of common sorghum varieties in Kenya and Sudan

    Get PDF
    To understand the effect of different farming systems on the dynamics of diversity of sorghum (Sorghum bicolor (L.) Moench) crop, genetic structure of widely used landraces and modern varieties collected from two contrasting agroecosystems, in eastern Sudan and western Kenya, were analysed with 16 polymorphic microsatellite markers. A total of 1104 accessions, grouped into 46 samples from individual farmers, were genotyped. Cluster analysis of the samples from the two countries displayed contrasting patterns. Most strikingly, differently named landraces from western Kenya formed widely overlapping clusters, indicating weak genetic differentiation, while those from eastern Sudan formed clearly distinguishable groups. Similarly, samples of the modern variety from Sudan displayed high homogeneity, whereas the most common modern variety from western Kenya was very heterogeneous. The high degree of fragmentation of farmlands of western Kenya, coupled with planting of different sorghum varieties in the same fields, increases the likelihood of inter-variety gene flow. This may explain the low genetic differentiation between the differently named landraces and heterogeneity of the modern variety from western Kenya. This study highlights the important role of farmers in shaping the genetic variation of their crops and provides population parameter estimates allowing forecasting of the fate of ‘modern’ germplasm (conventional or genetically modified) when introduced into subsistence farming systems

    Genetic diversity of provitamin-A cassava (Manihot esculenta Crantz) in Sierra Leone

    Get PDF
    Open Access Article; Published online: 04 Mar 2020Understanding the genetic diversity among accessions and germplasm is an important requirement for crop development as it allows for the selection of diverse parental combinations for enhancing genetic gain in varietal selection, advancement and release. The study aimed to characterize 183 provitamin A cassava (Manihot esculenta Crantz) accessions and five Sierra Leonean varieties using morphological traits, total carotenoid content and SNP markers to develop a collection for conservation and further use in the cassava breeding program. Both morphological parameters and 5634 SNP markers were used to assess the diversity among the provitamin-A cassava accessions and varieties. Significant differences were observed among the accessions for most of the traits measured. The first five PCs together accounted for 70.44% of the total phenotypic variation based on yield and yield components among the 183 provitamin-A cassava accessions and five Sierra Leonean varieties. The present study showed that provitamin-A cassava accessions in Sierra Leone have moderate to high diversity based on morphological and molecular assessment studies. The similarity index among the 187 and 185 cassava accessions grouped them into 6 and 9 distinct clusters based on morphological and molecular analyses, respectively. A significant positive, but low correlation (r = 0.104; p\0.034), was observed between the two dendrograms. The results obtained will serve as a guide and basis of germplasm management and improvement for total carotenoid content, yield and African cassava mosaic disease resistance in Sierra Leone

    Genome-Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content

    Get PDF
    Article purchased; Published online: 3 August 2017Cassava (Manihot esculenta (L.) Crantz) is a starchy root crop cultivated in the tropics for fresh consumption and commercial processing. Dry matter content and micronutrient density, particularly of provitamin A, traits that are negatively correlated, are among the primary selection objectives in cassava breeding. This study aimed at identifying genetic markers associated with these traits and uncovering the potential underlying cause of their negative correlation - whether linkage and/or pleiotropy. A genome-wide association mapping using 672 clones genotyped at 72,279 SNP loci was carried out. Root yellowness was used indirectly to assess variation in carotenoid content. Two major loci for root yellowness was identified on chromosome 1 at positions 24.1 and 30.5 Mbp. A single locus for dry matter content that co-located with the 24.1 Mbp peak for carotenoid content was identified. Haplotypes at these loci explained a large proportion of the phenotypic variability. Evidence of mega-base-scale linkage disequilibrium around the major loci of the two traits and detection of the major dry matter locus in independent analysis for the white- and yellow-root subpopulations suggests that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid (phytoene synthase) and starch biosynthesis (UDP-glucose pyrophosphorylase and sucrose synthase) occurred in the vicinity of the identified locus at 24.1 Mbp. These findings elucidate on the genetic architecture of carotenoids and dry matter in cassava and provides an opportunity to accelerate genetic improvement of these traits

    Genome-wide association study of resistance to cassava green mite pest and related traits in cassava

    Get PDF
    Published: 26 July 2018Cassava green mite [CGM, Mononychellus tanajoa (Bondar)] is a dry-season pest that usually feeds on the underside of young leaves causing leaf chlorosis, stunted growth, and root yield reduction by 80%. Since cassava (Manihot esculenta Crantz) leaves and roots serve as a primary staple food source, a decline in cassava yield can lead to household food, nutrition, and income insecurity. To evaluate the existence of CGM resistance alleles in the available germplasm, a diversity panel of 845 advanced breeding lines obtained from IITA, CIAT, and the National Root Crops Research Institute (NRCRI) were evaluated for CGM severity (CGMS), leaf pubescence (LP), leaf retention (LR), stay green, shoot tip compactness, and shoot tip size. A genome-wide association mapping detected 35 single-nucleotide polymorphisms (SNPs) markers significantly associated with CGMS, LP, and LR on chromosome 8. Colocalization of the most significant SNP associated with CGMS, LP, and LR on chromosome 8 is possibly an indication of pleiotropy or the presence of closely linked genes that regulate these traits. Seventeen candidate genes were found to be associated to CGM resistance. These candidate genes were subdivided into seven categories according to their protein structure namely, Zn finger, pentatricopeptide, MYB, MADS, homeodomain, trichome birefringence-related protein, and ethylene-responsive transcription factor genes. This study revealed significant loci associated with CGM, not previously reported, which together represent potential sources for the ongoing effort to develop multiple pest- and disease-resistant cassava cultivars

    Climate change challenges, plant science solutions

    Get PDF
    Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community

    Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    High water availability in drought tolerant crops is driven by root engineering of the soil micro-habitat

    No full text
    Received 3 March 2020; Received in revised form 19 August 2020; Accepted 14 September 2020Improving our understanding of drought tolerance of crops is essential in light of future predicted changes in rainfall, decreased groundwater availability, and increasing temperatures. With a focus on above ground traits, significant improvements in drought tolerance of plants has occurred. With such gains plateauing, we have sought to quantify the belowground functional interactions between plant roots and soil in relation to drought tolerance. Using physical, chemical and biological approaches, we compared drought tolerant and sensitive model plants to demonstrate that a tolerant plant alters both the surrounding pore geometry and the relative abundance of bacteria and upregulates the development of a slow wetting rhizosheath, which increases water uptake under drought conditions. We propose that such rhizosheath traits can be targeted to modify the biophysical properties of the rhizosheath to access water in drought conditions.Sheikh M.F. Rabbi, Matthew K. Tighe, Charles R. Warren, Yi Zhou, Matthew D. Denton, Margaret M.Barbour, Iain M.Youn
    • 

    corecore