5,557 research outputs found

    Associated heavy quarks pair production with Higgs as a tool for a search for non-perturbative effects of the electroweak interaction at the LHC

    Full text link
    Assuming an existence of an anomalous triple electro-weak bosons interaction being defined by coupling constant λ\lambda, we calculate its contribution to interactions of the Higgs with pairs of heavy particles. Bearing in mind experimental restrictions −0.011<λ<0.011-0.011 < \lambda < 0.011 we present results for possible effects in processes p p→W+W−H, p p→W+ZH, p p→W−ZH, p p→tˉtHp\,p \to W^+ W^- H,\,p\,p \to W^+ Z H,\,p\,p \to W^- Z H,\,p\,p \to \bar t t H , pp→bˉbHp p \to \bar b b H. Effects could be significant with negative sign of λ\lambda in associated heavy quarks t, bt,\,b pairs production with the Higgs. In calculations we rely on results of the non-perturbative approach to a spontaneous generation of effective interactions, which defines the form-factor of the three-boson anomalous interaction.Comment: 6 pages, 2 figures, few typos corrected, references adde

    Chirality sensitive effect on surface states in chiral p-wave superconductors

    Full text link
    We study the local density of states at the surface of a chiral p-wave superconductor in the presence of a weak magnetic field. As a result, the formation of low-energy Andreev bound states is either suppressed or enhanced by an applied magnetic field, depending on its orientation with respect to the chirality of the p-wave superconductor. Similarly, an Abrikosov vortex, which is situated not too far from the surface, leads to a zero-energy peak of the density of states, if its chirality is the same as that of the superconductor, and to a gap structure for the opposite case. We explain the underlying principle of this effect and propose a chirality sensitive test on unconventional superconductors.Comment: 4 pages, 2 figure

    Quasiclassical approach to the spin-Hall effect in the two-dimensional electron gas

    Get PDF
    We study the spin-charge coupled transport in a two-dimensional electron system using the method of quasiclassical (ξ\xi-integrated) Green's functions. In particular we derive the Eilenberger equation in the presence of a generic spin-orbit field. The method allows us to study spin and charge transport from ballistic to diffusive regimes and continuity equations for spin and charge are automatically incorporated. In the clean limit we establish the connection between the spin-Hall conductivity and the Berry phase in momentum space. For finite systems we solve the Eilenberger equation numerically for the special case of the Rashba spin-orbit coupling and a two-terminal geometry. In particular, we calculate explicitly the spin-Hall induced spin polarization in the corners, predicted by Mishchenko et al. [13]. Furthermore we find universal spin currents in the short-time dynamics after switching on the voltage across the sample, and calculate the corresponding spin-Hall polarization at the edges. Where available, we find perfect agreement with analytical results.Comment: 9 pages, 6 figure

    Local density of states at polygonal boundaries of d-wave superconductors

    Full text link
    Besides the well-known existence of Andreev bound states, the zero-energy local density of states at the boundary of a d-wave superconductor strongly depends on the boundary geometry itself. In this work, we examine the influence of both a simple wedge-shaped boundary geometry and a more complicated polygonal or faceted boundary structure on the local density of states. For a wedge-shaped boundary geometry, we find oscillations of the zero-energy density of states in the corner of the wedge, depending on the opening angle of the wedge. Furthermore, we study the influence of a single Abrikosov vortex situated near a boundary, which is of either macroscopic or microscopic roughness.Comment: 10 pages, 11 figures; submitted to Phys. Rev.
    • …
    corecore