175 research outputs found

    F-Term Hybrid Inflation Followed by a Peccei-Quinn Phase Transition

    Full text link
    We consider a cosmological set-up, based on renormalizable superpotential terms, in which a superheavy scale F-term hybrid inflation is followed by a Peccei-Quinn phase transition, resolving the strong CP and mu problems of the minimal supersymmetric standard model. We show that the field which triggers the Peccei-Quinn phase transition can remain after inflation well above the Peccei-Quinn scale thanks to (i) its participation in the supergravity and logarithmic corrections during the inflationary stage and (ii) the high reheat temperature after the same period. As a consequence, its presence influences drastically the inflationary dynamics and the universe suffers a second period of reheating after the Peccei-Quinn phase transition. Confronting our inflationary predictions with the current observational data, we find that, for about the central value of the spectral index, the grand unification scale can be identified with its supersymmetric value for the relevant coupling constant \kappa=0.002 and, more or less, natural values, +/-(0.01-0.1), for the remaining parameters. On the other hand, the final reheat temeperature after the Peccei-Quinn phase transition turns out to be low enough so as the gravitino problem is avoided.Comment: 15 pages including 8 figures, version published in Phys. Rev.

    Gravitino Dark Matter and Neutrino Masses in Partial Split Supersymmetry

    Full text link
    Partial Split Supersymmetry with bilinear R-parity violation allows to reproduce all neutrino mass and mixing parameters. The viable dark matter candidate in this model is the gravitino. We study the hypothesis that both possibilities are true: Partial Split Supersymmetry explains neutrino physics and that dark matter is actually composed of gravitinos. Since the gravitino has a small but non-zero decay probability, its decay products could be observed in astrophysical experiments. Combining bounds from astrophysical photon spectra with the bounds coming from the mass matrix in the neutrino sector we derive a stringent upper limit for the allowed gravitino mass. This mass limit is in good agreement with the results of direct dark matter searches.Comment: 22 pages, 3 figure

    Non-thermal leptogenesis via direct inflaton decay without SU(2)(L) triplets

    Full text link
    We present a non-thermal leptogenesis scenario following standard supersymmetric hybrid inflation, in the case where light neutrinos acquire mass via the usual seesaw mechanism and inflaton decay to heavy right-handed neutrino superfields is kinematically disallowed, or the right-handed neutrinos which can be decay products of the inflaton are unable to generate sufficient baryon asymmetry via their subsequent decay. The primordial lepton asymmetry is generated through the decay of the inflaton into light particles by the interference of one-loop diagrams with exchange of different right-handed neutrinos. The mechanism requires superpotential couplings explicitly violating a U(1) R-symmetry and R-parity. We take into account the constraints from neutrino masses and mixing and the preservation of the primordial asymmetry. We consider two models, one without and one with SU(2)(R) gauge symmetry. We show that the former is viable, whereas the latter is ruled out. Although the broken R-parity need not have currently observable low-energy signatures, some R-parity-violating slepton decays may be detectable in the future colliders.Comment: 22 pages including 9 figures, uses Revtex, version to appear in PR

    Non-thermal Leptogenesis and a Prediction of Inflaton Mass in a Supersymmetric SO(10) Model

    Full text link
    The gravitino problem gives a severe constraint on the thermal leptogenesis scenario. This problem leads us to consider some alternatives to it if we try to keep the gravitino mass around the weak scale m3/2100m_{3/2} \sim 100 GeV. We consider, in this paper, the non-thermal leptogenesis scenario in the framework of a minimal supersymmetric SO(10) model. Even if we start with the same minimal SO(10) model, we have different predictions for low-energy phenomenologies dependent on the types of seesaw mechanism. This is the case for leptogenesis: it is shown that the type-I see-saw model gives a consistent scenario for the non-thermal leptogenesis but not for type-II. The predicted inflaton mass needed to produce the observed baryon asymmetry of the universe is found to be MI5×1011M_I \sim 5 \times 10^{11} GeV for the reheating temperature TR=106T_R = 10^6 GeV.Comment: 9 pages, 2 figures; the version to appear in JCA

    Baryogenesis by B - L generation due to superheavy particle decay

    Full text link
    We have shown that the BLB-L generation due to the decay of the thermally produced superheavy fields can explain the Baryon assymmetry in the universe if the superheavy fields are heavier than 10131410^{13-14} GeV. Note that although the superheavy fields have non-vanishing charges under the standard model gauge interactions, the thermally prduced baryon asymmetry is sizable. The BLB-L violating effective operators induced by integrating the superheavy fields have dimension 7, while the operator in the famous leptogenesis has dimension 5. Therefore, the constraints from the nucleon stability can be easily satisfied.Comment: 12 pages, 4 figures, 3 table

    The Gravitino-Stau Scenario after Catalyzed BBN

    Full text link
    We consider the impact of Catalyzed Big Bang Nucleosynthesis on theories with a gravitino LSP and a charged slepton NLSP. In models where the gravitino to gaugino mass ratio is bounded from below, such as gaugino-mediated SUSY breaking, we derive a lower bound on the gaugino mass parameter m_1/2. As a concrete example, we determine the parameter space of gaugino mediation that is compatible with all cosmological constraints.Comment: 1+14 pages, 6 figures; v2: minor clarifications, 1 reference added, matches version to appear in JCA

    K^- Meson Production in the Proton-Proton Reaction at 3.67 GeV/c

    Full text link
    The total cross section of the reaction ppppK+Kpp\to ppK^+K^- has been determined for proton--proton reactions with pbeam=3.67GeV/cp_{beam}=3.67 GeV/c. This represents the first cross section measurement of the ppppKK+pp \to ppK^-K^+ channel near threshold, and is equivalent to the inclusive ppppKXpp\to ppK^-X cross section at this beam momentum. The cross section determined at this beam momentum is about a factor 20 lower than that for inclusive ppppK+Xpp\to ppK^+X meson production at the same CM energy above the corresponding threshold. This large difference in the K+K^+ and KK^- meson inclusive production cross sections in proton-proton reactions is in strong contrast to cross sections measured in sub-threshold heavy ion collisions, which are similar in magnitude at the same energy per nucleon below the respective thresholds.Comment: 12 pages, 3 figures Phys. Lett. B in prin

    Production of η\eta\prime Mesons in the ppppηpp \to pp\eta\prime Reaction at 3.67 GeV/c

    Full text link
    The ratio of the total exclusive production cross sections for η\eta\prime and η\eta mesons has been measured in the pppp reaction at pbeam=3.67p_{beam}=3.67 GeV/c. The observed η/η\eta\prime/\eta ratio is (0.83±0.110.18+0.23)×102(0.83\pm{0.11}^{+0.23}_{-0.18})\times 10^{-2} from which the exclusive η\eta\prime meson production cross section is determined to be (1.12±0.150.31+0.42)μb(1.12\pm{0.15}^{+0.42}_{-0.31})\mu b. Differential cross section distributions have been measured. Their shape is consistent with isotropic η\eta\prime meson production.Comment: 14 pages, 5 figures, accepted by Phys.Lett.

    Induced pseudoscalar coupling of the proton weak interaction

    Full text link
    The induced pseudoscalar coupling gpg_p is the least well known of the weak coupling constants of the proton's charged--current interaction. Its size is dictated by chiral symmetry arguments, and its measurement represents an important test of quantum chromodynamics at low energies. During the past decade a large body of new data relevant to the coupling gpg_p has been accumulated. This data includes measurements of radiative and non radiative muon capture on targets ranging from hydrogen and few--nucleon systems to complex nuclei. Herein the authors review the theoretical underpinnings of gpg_p, the experimental studies of gpg_p, and the procedures and uncertainties in extracting the coupling from data. Current puzzles are highlighted and future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic

    Pion interaction with the trinucleon up to the eta production threshold

    Full text link
    Pion elastic, charge exchange scattering and induced eta production on the trinucleon systems are investigated in a coupled-channels approach in momentum space with Fadeev wave functions. The channel πNηN\pi N \rightarrow \eta N is included using an isobar model with S-, P-, and D-wave resonances. While the coherent reactions like 3^3He(π,π)3\pi,\pi)^3He can be reasonably well reproduced up to TπT_{\pi}=500 MeV, large discrepancies appear for the incoherent processes, 3^3He(π,π0)3\pi^-,\pi^0)^3H and 3^3He(π,η)3\pi^-,\eta)^3H at backward angles and energies above Δ\Delta-resonance. In the forward direction the (π,η)(\pi,\eta) calculations underestimate the experimental measurements very close to threshold but agreement with the data improves with increasing pion energy. Predictions are made for the asymmetries of the various reactions on polarized 3^3He.Comment: 40 pages, 12 figures (available from the authors), Mainz preprint MKPH-T-92-1
    corecore