59 research outputs found

    A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    No full text
    International audienceWe start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000), we also predict latitudinal variations of primary proton temperatures at large solar distances

    Interplanetary scintillation and pulsar pulse statistics

    Full text link
    The effect of interplanetary plasma on pulsed pulsar radiation passing through is considered. The pulses of two rotating radio transients (J0609+16, J1132+25) and a pulsar (B0320+39) detected on the Large Phased Array (Pushchino observatory) were analyzed. It is shown that in observations at the frequency of 111 MHz, on elongations of 20o-40o, both an increase and a decrease in the number of received pulses are observed. The change in the number of pulses is explained by the distortion of the energy distribution of pulses due to interplanetary scintillation. These changes in the number of observed pulses are in qualitative agreement with the expected dependence of the scintillation index on the observed sources elongation. Analytical expressions are obtained that allow estimating the effective modulation index from observations of individual pulses for the power distribution of pulses by energy.Comment: accepted to MNRAS, 5 pages, 3 figure

    Study of Bright Compact Radio Sources of the Northern Hemisphere at the frequency of 111 MHz

    Full text link
    The search for compact components of strong (Sint5S_{int} \ge 5 Jy at 102.5 MHz) discrete radio sources from the Pushchino catalogue was carried out using the method of interplanetary scintillation. A total of 3620 sources were examined, and 812 of them were found to compact (scintillating) components. Estimates of fluctuations of the flux density of these compact components were derived from the scintillation index (mmaxm_{max}) corresponding to an elongation of 25o25^o. The angular size and compactness of 178 sources with compact components were estimated. Scintillation indices of sources corresponding to the compact component (mmaxm_{max}) and flux densities of compact components were determined. It was demonstrated that slow variations of the spatial distribution of interplanetary plasma, which are related to the 11-year cycle of solar activity, may exert a systematic influence on the estimates of angular sizes of sources. Coefficients compensating the deviation from the spherical symmetry of solar wind in the estimates of angular sizes were found using the coefficient of asymmetry of the statistical distribution of intensity fluctuations. The study of correlations between the parameters of sources in the sample revealed that the maximum value of the scintillation index decreases as the integrated flux increases, while the angular size has no marked dependence on the integrated flux.Comment: published in Astronomy Report, translated by Yandex translator with correction of scientific lexis, 16 pages, 6 figures, 3 table, appendi

    Detection of Five New RRATs at 111 MHz

    Full text link
    Results of 111-MHz monitoring observations carried out on the Big Scanning Antenna of the Pushchino Radio Astronomy Observatory during September 1-28, 2015 are presented. Fifty-four pulsating sources were detected at declinations 9o<δ<+42o-9^o < \delta < +42^o. Forty-seven of these are known pulsars, five are new sources, and two are previously discovered transients. Estimates of the peak flux densities and dispersion measures are presented or all these sources.Comment: published in Astronomy Report, translated by Yandex translator with correction of scientific lexis, 8 pages, 2 figures, 3 table

    Theory of Parabolic Arcs in Interstellar Scintillation Spectra

    Full text link
    Our theory relates the secondary spectrum, the 2D power spectrum of the radio dynamic spectrum, to the scattered pulsar image in a thin scattering screen geometry. Recently discovered parabolic arcs in secondary spectra are generic features for media that scatter radiation at angles much larger than the rms scattering angle. Each point in the secondary spectrum maps particular values of differential arrival-time delay and fringe rate (or differential Doppler frequency) between pairs of components in the scattered image. Arcs correspond to a parabolic relation between these quantities through their common dependence on the angle of arrival of scattered components. Arcs appear even without consideration of the dispersive nature of the plasma. Arcs are more prominent in media with negligible inner scale and with shallow wavenumber spectra, such as the Kolmogorov spectrum, and when the scattered image is elongated along the velocity direction. The arc phenomenon can be used, therefore, to constrain the inner scale and the anisotropy of scattering irregularities for directions to nearby pulsars. Arcs are truncated by finite source size and thus provide sub micro arc sec resolution for probing emission regions in pulsars and compact active galactic nuclei. Multiple arcs sometimes seen signify two or more discrete scattering screens along the propagation path, and small arclets oriented oppositely to the main arc persisting for long durations indicate the occurrence of long-term multiple images from the scattering screen.Comment: 22 pages, 11 figures, submitted to the Astrophysical Journa

    The effects of a kappa-distribution in the heliosheath on the global heliosphere and ENA flux at 1 AU

    Full text link
    We investigate heliosheath energetic neutral atom (ENA) fluxes at keV energies, by assuming that the heliosheath proton distribution can be approximated by a kappa-distribution. The choice of the kappa parameter derives from observational data of the solar wind (SW). This has direct applications to the upcoming IBEX mission. We will look at all-sky ENA maps within the IBEX energy range (10 eV to 6 keV), as well as ENA energy spectra in several directions. We find that the use of kappa, as opposed to a Maxwellian, gives rise to greatly increased ENA fluxes above 1 keV, while medium energy fluxes are somewhat reduced. We show how IBEX data can be used to estimate the spectral slope in the heliosheath, and that the use of kappa reduces the differences between ENA maps at different energies. We also investigate the effect introducing a kappa-distribution has on the global interaction between the SW and the local interstellar medium (LISM), and find that there is generally an increase in energy transport from the heliosphere into the LISM, due to the modified profile of ENA's energies. This results in a termination shock that moves out by 4 AU, a heliopause that moves in by 9 AU and a bow shock 25 AU farther out, in the nose direction

    Pulsar microstructure and its quasi-periodicities with the S2 VLBI system at a resolution of 62.5 nanoseconds

    Get PDF
    We report on a study of microstructure and its quasi-periodicities of three pulsars at 1.65 GHz with the S2 VLBI system at a resolution of 62.5 ns, by far the highest for any such statistical study yet. For PSR B1929+10 we found in the average cross-correlation function (CCF) broad microstructure with a characteristic timescale of 95+-10 mcs and confirmed microstructure with characteristic timescales between 100 and 450 mcs for PSRs B0950+08 and B1133+16. On a finer scale PSRs B0950+08, B1133+16 (component II) and B1929+10 show narrow microstructure with a characteristic timescale in the CCFs of ~10 mcs, the shortest found in the average CCF or autocorrelation function (ACF) for any pulsar, apart perhaps for the Crab pulsar. Histograms of microstructure widths are skewed heavily toward shorter timescales but display a sharp cutoff. The shortest micropulses have widths between 2 and 7 mcs. No nanopulses or unresolved pulse spikes were detected. Cross-power spectra of single pulses show a large range of complexity with single spectral features representing classic quasi-periodicities and broad and overlapping features with essentially no periodicities at all. Significant differences were found for the two components of PSR B1133+16 in every aspect of our statistical analysis of micropulses and their quasi-periodicities. Asymmetries in the magnetosphere and the hollow cone of emission above the polar cap of the neutron star may be responsible for these differences.Comment: 18 pages, 11 figures, 3 tables, A&A, 2001, accepte
    corecore