2,097 research outputs found

    The dominant X-ray wind in massive star binaries

    Full text link
    We investigate which shocked wind is responsible for the majority of the X-ray emission in colliding wind binaries, an issue where there is some confusion in the literature, and which we show is more complicated than has been assumed. We find that where both winds rapidly cool (typically close binaries), the ratio of the wind speeds is often more important than the momentum ratio, because it controls the energy flux ratio, and the faster wind is generally the dominant emitter. When both winds are largely adiabatic (typically long-period binaries), the slower and denser wind will cool faster and the stronger wind generally dominates the X-ray luminosity.Comment: 4 pages, 1 figure, accepted by A&A Letter

    Drifting subpulses and inner acceleration regions in radio pulsars

    Full text link
    The classical vacuum gap model of Ruderman & Sutherland, in which spark-associated subbeams of subpulse emission circulate around the magnetic axis due to the EB drift, provides a natural and plausible physical mechanism of the subpulse drift phenomenon. Recent progress in the analysis of drifting subpulses in pulsars has provided a strong support to this model by revealing a number of subbeams circulating around the magnetic axis in a manner compatible with theoretical predictions. However, a more detailed analysis revealed that the circulation speed in a pure vacuum gap is too high when compared with observations. Moreover, some pulsars demonstrate significant time variations of the drift rate, including a change of the apparent drift direction, which is obviously inconsistent with the EB drift scenario in a pure vacuum gap. We resolved these discrepancies by considering a partial flow of iron ions from the positively charged polar cap, coexisting with the production of outflowing electron-positron plasmas. By fitting the observationally deduced drift-rates to the theoretical values, we managed to estimate polar cap surface temperatures in a number of pulsars. The estimated surface temperatures correspond to a small charge depletion of the order of a few percent of the corotational charge density. We also argue that if the thermionic electron outflow from the surface of a negatively charged polar cap is slightly below the Goldreich-Julian density, then the resulting small charge depletion will have similar consequences as in the case of the ions outflow. We thus believe that the sparking discharge of a partially shielded acceleration potential drop occurs in all pulsars, with both positively (``pulsars'') and negatively (``anti-pulsars'') charged polar caps

    Real and virtual photons in an external constant electromagnetic field of most general form

    Full text link
    The photon behavior in an arbitrary superposition of constant magnetic and electric fields is considered on most general grounds basing on the first principles like Lorentz- gauge- charge- and parity-invariance. We make model- and approximation-independent, but still rather informative, statements about the behavior that the requirement of causal propagation prescribes to massive and massless branches of dispersion curves, and describe the way the eigenmodes are polarized. We find, as a consequence of Hermiticity in the transparency domain, that adding a smaller electric field to a strong magnetic field in parallel to the latter causes enhancement of birefringence. We find the magnetic field produced by a point electric charge far from it (a manifestation of magneto-electric phenomenon). We establish degeneracies of the polarization tensor that (under special kinematic conditions) occur due to space-time symmetries of the vacuum left after the external field is imposed.Comment: 30 pages, 1 figure, 57 equations, reference list of 38 item

    Yet Another Model of Gamma-Ray Bursts

    Get PDF
    Sari and Piran have demonstrated that the time structure of gamma-ray bursts must reflect the time structure of their energy release. A model which satisfies this condition uses the electrodynamic emission of energy by the magnetized rotating ring of dense matter left by neutron star coalescence; GRB are essentially fast, high field, differentially rotating pulsars. The energy densities are large enough that the power appears as an outflowing equilibrium pair plasma, which produces the burst by baryon entrainment and subsequent internal shocks. I estimate the magnetic field and characteristic time scale for its rearrangement, which determines the observed time structure of the burst. There may be quasi-periodic oscillations at the rotational frequencies, which are predicted to range up to 5770 Hz (in a local frame). This model is one of a general class of electrodynamic accretion models which includes the Blandford and Lovelace model of AGN, and which can also be applied to black hole X-ray sources of stellar mass. The apparent efficiency of nonthermal particle acceleration is predicted to be 10--50%, but higher values are possible if the underlying accretion flow is super-Eddington. Applications to high energy gamma-ray observations of AGN are briefly discussed.Comment: 21pp, latex, uses aaspp4.st

    Positronium collapse and the maximum magnetic field in pure QED

    Get PDF
    A maximum value for the magnetic field is determined, which provides the full compensation of the positronium rest mass by the binding energy in the maximum symmetry state and disappearance of the energy gap separating the electron-positron system from the vacuum. The compensation becomes possible owing to the falling to the center phenomenon. The maximum magnetic field may be related to the vacuum and describe its structure.Comment: 4 pages, accepted for publication in Phys. Rev. Letter

    Magnetic penetration-depth measurements of a suppressed superfluid density of superconducting Ca0.5_{0.5}Na0.5_{0.5}Fe2_2As2_2 single crystals by proton irradiation

    Full text link
    We report on the dramatic effect of random point defects, produced by proton irradiation, on the superfluid density ρs\rho_{s} in superconducting Ca0.5_{0.5}Na0.5_{0.5}Fe2_2As2_2 single crystals. The magnitude of the suppression is inferred from measurements of the temperature-dependent magnetic penetration depth λ(T)\lambda(T) using magnetic force microscopy. Our findings indicate that a radiation dose of 2×1016\times10^{16}cm2^{-2} produced by 3 MeV protons results in a reduction of the superconducting critical temperature TcT_{c} by approximately 10%. % with no appreciable change in the slope of the upper critical fields. In contrast, ρs(0)\rho_{s}(0) is suppressed by approximately 60%. This break-down of the Abrikosov-Gorkov theory may be explained by the so-called "Swiss cheese model", which accounts for the spatial suppression of the order parameter near point defects similar to holes in Swiss cheese. Both the slope of the upper critical field and the penetration depth λ(T/Tc)/λ(0)\lambda(T/T_{c})/\lambda(0) exhibit similar temperature dependences before and after irradiation. This may be due to a combination of the highly disordered nature of Ca0.5_{0.5}Na0.5_{0.5}Fe2_2As2_2 with large intraband and simultaneous interband scattering as well as the s±s^\pm-wave nature of short coherence length superconductivity
    corecore