7 research outputs found

    Influenza virus infection and postviral bacterial pneumonia pathogenesis induced by different subtypes of influenza virus in mice

    Get PDF
    Secondary bacterial infections after influenza virus infection further increase morbidity and mortality due to influenza. Despite of seasonal influenza vaccination, antiviral drugs and antibiotics are widely used in viral/bacterial pneumonia therapy. Therefore, further comprehensive study of the infection pathogenesis is relevant. Murine models for influenza virus infection were reproduced with different virus subtypes A/California/04/2009MA (pandemic H1N1 2009), A/Puerto Rico/8/34 (H1N1) and A/Aichi/2/69 (H3N2), Anadyr/177/2009 (H1N1) and for post-influenza bacterial pneumonia caused by the Gram-positive Staphylococcus aureus. After the infection occurs, its pathogenic features were detected by daily monitoring the mortality (survival) and morbidity rate (body weight loss) and, in addition, viral pathogenesis also was evaluated by assessing virus replication (viral titer) and humoral immune responses (production of pro- and anti-inflammatory cytokines) in respiratory tract of infected mice including during antiviral (oseltamivir) and antibacterial (cefuroxime) therapy. Mortality and virus titer in the infected mice did not differ significantly between the groups of different influenza A virus subtypes. However, production of cytokines (IL-10, IFNg, TNFa) and weight gain proved to be different. Mortality of the mice reached 100% after secondary bacterial infection, whereas IFNg and TNFa levels in mice lung increased reached maximal values in the treated groups. Viral subtype A/California/04/2009MA of influenza A was most pathogenic in mouse model of secondary bacterial pneumonia. Antiviral and antibacterial treatment caused a decrease in mortality, reduced viral titers in lungs, and retain body weight gain of mice. According to these points, the treatment groups did not significantly differ from each other. At the same time, it should be noted that the cytokine production significantly decreased in the treated groups, and IL-10 and IFNg levels in lungs were different, that may be due to therapeutic mechanisms of these drugs. Thus, antiviral therapy for influenza infection and combination therapy for viralbacterial pneumonia can be an effective tool to reduce mortality of influenza

    EFFECT AUTOMOBILE WHEEL RIM ROLLING DISK OF SILICONE ON ITS STRUCTURE AND MECHANICAL PROPERTIES

    Full text link
    Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ микроструктура ΠΈ мСханичСскиС свойства Π»ΠΈΡ‚Ρ‹Ρ… дисков Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… колСс ΠΈΠ· силумина ΠΌΠ°Ρ€ΠΊΠΈ АК7 послС раскатки ΠΎΠ±ΠΎΠ΄Π°. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ тСрмичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ достигнуто ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ мСханичСских свойств.The microstructure and mechanical properties of cast wheel discs from silumin brand AK7 after rolling the rim. As a result, deformation and subsequent heat treatment achieved improvement in the mechanical properties

    Peculiarities of the influenza viruses circulation and their properties during 2018-2019 epidemic season in Russia and countries of the Northern Hemisphere

    Get PDF
    Objective. To identify the drift variability of influenza viruses during the period of epidemic rise in the incidence of acute respiratory viral infections in the period 2018-2019. The biological and molecular-genetic properties of epidemic strains isolated in certain territories of the Russian Federation were studied and compared with data from the countries of the Northern Hemisphere. Materials and methods. A range of laboratory diagnostic methods has been applied, including immune fluorescence, RT-PCR, sequencing, methods for determining sensitivity to influenza drugs and receptor specificity. Results and discussion. The proportion of influenza viruses was as follows: A (H1N1) pdm09 - 53 %, A (H3N2) - 46 %, B - about 1 %. Cases of severe acute respiratory infections have most often been associated with influenza A(H1N1) pdm09 virus. According to antigenic properties, isolated strains corresponded to the properties of vaccine viruses (A/Michigan/45/2015 - by 99.6 % and A/Singapore INFIMH-16-0019/2016 - by 86 %). The heterogeneity of influenza A virus strains population was revealed as regards individual mutations in hemaglutinin. The influenza B virus population was equally represented by both evolutionary lines (B/Victoria and B/Yamagata-like). Receptor specificity was favorable for the course and outcome of the disease. Among 70 studied epidemic strains, no strains resistant to anti-neuraminidase drugs, oseltamivir and zanamivir, were detected. The article presents WHO recommendations on the composition of influenza vaccines for the countries of the Northern Hemisphere for 2019-2020, provides data on cases of human infection with avian influenza viruses A(H5N1), A(H5N6), A(H7N9) and A(H9N2)

    Π—Π°Π±ΠΎΠ»Π΅Π²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ Π³Ρ€ΠΈΠΏΠΏΠΎΠΌ Π² январС-ΠΌΠ°Ρ€Ρ‚Π΅ 2016 Π³. Π² Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ: эпидСмичСский ΠΈ пандСмичСский ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π» вируса Π³Ρ€ΠΈΠΏΠΏΠ° A(H1N1)pdm09

    Get PDF
    The World Health Organization (WHO) searches influenza virus circulation in community and in natural biocenosis, studies virus strains and their properties, develops diagnostic methods and preventive measures since 1940th worldwide because of epidemic actuality and high pandemic potential of the influenza virus. The Federal Influenza Center (including Federal Research Institute of Influenza, Saint-Petersburg, and the Center of Virus Ecology, D.I.Ivanovskiy Virology Institute, Honorary Academician N.F.GamaleyaFederal Research Center of Epidemiology and Microbiology, Federal Research Center for Epidemiology and Microbiology, Moscow) performs similar work in Russia in close cooperation with WHO within the framework of the International Programme of Influenza Monitoring. A(H1N1)pdm09 influenza virus dominated in the Northern Hemisphere in the 2015 – 2016 epidemic season. Morbidity growth was noted from the end of January, 2016, to the beginning of March, 2016. The peak morbidity at the 5th week of the year exceeded the epidemic threshold (132 cases per 10,000 of population) and morbidity in the 2014 – 2015 season significantly and approached to the peak morbidity of the 2009 – 2010 epidemic season. The epidemic growth in Russian Federation was provided by three influenza viruses: A(H1N1)pdm09, Π’ and A (H3N2). A(H1N1)pdm09 virus caused 18% of all acute respiratory diseases and accounted for 84% of circulating influenza viruses.Flu was diagnosed in patients of different age with maximal frequency in 3- to 6-year old children. Peak admission number was registered at 5 and 6 weeks (3,538 and 4,109 cases, respectively); this number exceeded the similar parameter of the 2009 – 2010 season. Patients of 15 to 64 years old were admitted more often including those with acute respiratory infection. Two hundred and thirty nine deaths were registered to the 5th of April, 2016, according to data from the Federal Influenza Center and the Center of Virus Ecology. The diagnosis of A(H1N1)pdm09 flu was confirmed in 97.9% of deaths. Molecular analysis of isolated strains of A(H1N1)pdm09 influenza virus revealed amino acid substitutions in receptor binding site and SA site of hemagglutinin and in genes coding intrinsic proteins PA, NP, M1, and NS1. Influenza virus strains resistive to anti-neuraminidase drugs were encountered in #< 1% in the Northern Hemisphere countries. No strains studied were sensitive to adamantine derivates.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π‘ 1947 Π³. Π² связи с эпидСмичСской Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ ΠΈ высоким пандСмичСским ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠΌ вируса Π³Ρ€ΠΈΠΏΠΏΠ° Ρ‚ΠΈΠΏΠ° А ΠΏΠΎ ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ‚ΠΈΠ²Π΅ ВсСмирной ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ здравоохранСния (Π’ΠžΠ—) ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΎΠ²Π°Π½Π° Π“Π»ΠΎΠ±Π°Π»ΡŒΠ½Π°Ρ систСма ΠΏΠΎ Π½Π°Π΄Π·ΠΎΡ€Ρƒ Π·Π° Π³Ρ€ΠΈΠΏΠΏΠΎΠΌ ΠΈ ΠΎΡ‚Π²Π΅Ρ‚Ρƒ (Global Influenza Surveillance and Response System – GISRS), которая Π² настоящСС врСмя прСдставлСна 6 ΡΠΎΡ‚Ρ€ΡƒΠ΄Π½ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠΌΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ ΠΏΠΎ Π³Ρ€ΠΈΠΏΠΏΡƒ, 143 Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ ΠΏΠΎ Π³Ρ€ΠΈΠΏΠΏΡƒ Π² 113 странах, Π° Ρ‚Π°ΠΊΠΆΠ΅ производитСлями Π³Ρ€ΠΈΠΏΠΏΠΎΠ·Π½Ρ‹Ρ… Π²Π°ΠΊΡ†ΠΈΠ½. Российская ЀСдСрация прСдставлСна Π² этой систСмС двумя Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°ΠΌΠΈ – Π€Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌ Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ ΠΏΠΎ Π³Ρ€ΠΈΠΏΠΏΡƒ (Π€Π¦Π“) Π€Π“Π‘Π£ «Научно-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΠΉ институт Π³Ρ€ΠΈΠΏΠΏΠ°Β» ΠœΠΈΠ½Π·Π΄Ρ€Π°Π²Π° России (Π‘Π°Π½ΠΊΡ‚-ΠŸΠ΅Ρ‚Π΅Ρ€Π±ΡƒΡ€Π³) ΠΈ Π¦Π΅Π½Ρ‚Ρ€ΠΎΠΌ экологии ΠΈ эпидСмиологии Π³Ρ€ΠΈΠΏΠΏΠ° (Π¦Π­Π­Π“) Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π° вирусологии ΠΈΠΌ. Π”.И.Ивановского Π€Π“Π‘Π£ Β«Π€Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π½Π°ΡƒΡ‡Π½ΠΎ-ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΡΠΊΠΈΠΉ Ρ†Π΅Π½Ρ‚Ρ€ эпидСмиологии ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠ±ΠΈΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈΠΌΠ΅Π½ΠΈ ΠΏΠΎΡ‡Π΅Ρ‚Π½ΠΎΠ³ΠΎ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΊΠ° Н.Π€.Π“Π°ΠΌΠ°Π»Π΅ΠΈΒ» ΠœΠΈΠ½Π·Π΄Ρ€Π°Π²Π° России (Москва). Оба Ρ†Π΅Π½Ρ‚Ρ€Π° ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ Π΅ΠΆΠ΅Π½Π΅Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π½Π°Π΄Π·ΠΎΡ€ Π·Π° циркуляциСй вирусов Π³Ρ€ΠΈΠΏΠΏΠ° Π² 59 Π³ΠΎΡ€ΠΎΠ΄Π°Ρ… Российской Π€Π΅Π΄Π΅Ρ€Π°Ρ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ Π°Π½Π°Π»ΠΈΠ· заболСваСмости, госпитализации, Π»Π΅Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… случаСв ΠΎΡ‚ Π³Ρ€ΠΈΠΏΠΏΠ° ΠΈ острой рСспираторной вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ (ΠžΠ Π’Π˜) Π² Ρ€Π°Π·Π½Ρ‹Ρ… возрастных Π³Ρ€ΡƒΠΏΠΏΠ°Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ диагностики с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ спСктра Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ². ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ странах Π‘Π΅Π²Π΅Ρ€Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡƒΡˆΠ°Ρ€ΠΈΡ Π² эпидСмичСском сСзонС 2015–2016 Π³Π³. Π² этиологии подъСма заболСваСмости Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π» вирус Π³Ρ€ΠΈΠΏΠΏΠ° A(H1N1)pdm09. ПодъСм заболСваСмости Π³Ρ€ΠΈΠΏΠΏΠΎΠΌ Π² России зарСгистрирован с ΠΊΠΎΠ½Ρ†Π° января Π΄ΠΎ Π½Π°Ρ‡Π°Π»Π° ΠΌΠ°Ρ€Ρ‚Π° 2016 Π³. ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ заболСваСмости Π½Π° ΠΏΠΈΠΊΠ΅ эпидСмии (5-я нСдСля 2016 Π³.), Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ прСвысив эпидСмичСский ΠΏΠΎΡ€ΠΎΠ³ (132 случая Π½Π° 10 тыс. насСлСния) ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ сСзона 2014–2015 Π³Π³., ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ эпидСмичСского сСзона 2009–2010 Π³Π³. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π­Ρ‚ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ структуру эпидСмичСского подъСма заболСваСмости Π² Π Π€ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ 3 вируса Π³Ρ€ΠΈΠΏΠΏΠ° – A(H1N1)pdm09, Π’ ΠΈ A(H3N2) ΠΏΡ€ΠΈ Ρ€Π°Π·Π½ΠΎΠΌ Π΄ΠΎΠ»Π΅Π²ΠΎΠΌ участии. Π“Ρ€ΠΈΠΏΠΏ A(H1N1)pdm09 Π² структурС ΠžΠ Π’Π˜ составила 18,0 %, Π² структурС Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… вирусов Π³Ρ€ΠΈΠΏΠΏΠ° – 84,0 %. Π—Π°Π±ΠΎΠ»Π΅Π²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ зарСгистрирована Π²ΠΎ всСх возрастных Π³Ρ€ΡƒΠΏΠΏΠ°Ρ…. Π‘α½ΉΠ»ΡŒΡˆΠ°Ρ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½Π½ΠΎΡΡ‚ΡŒ Π² эпидСмичСский процСсс зафиксирована Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ 3–6 Π»Π΅Ρ‚. МаксимальноС число госпитализаций ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Π½Π° 5-ΠΉ ΠΈ 6-ΠΉ нСдСлях 2016 Π³. – 3Β 538 ΠΈ 4Β 109 случаСв соотвСтствСнно, Ρ‡Ρ‚ΠΎ прСвысило ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ сСзона 2009–2010 Π³Π³. НаибольшСС число случаСв госпитализации, Π² Ρ‚. Ρ‡. с тяТСлой острой рСспираторной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠ΅ΠΉ, ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Π² возрастной Π³Ρ€ΡƒΠΏΠΏΠ΅ 15–64 Π»Π΅Ρ‚. По Π΄Π°Π½Π½Ρ‹ΠΌ Π€Π¦Π“ ΠΈ Π¦Π­Π­Π“, Π½Π° 05.04.16 зарСгистрировано 239 Π»Π΅Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исходов. Π’ 97,9 % случаСв Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹ΠΌΠΈ исслСдованиями ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ Π³Ρ€ΠΈΠΏΠΏ A(H1N1)pdm09. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ молСкулярно-гСнСтичСского Π°Π½Π°Π»ΠΈΠ·Π° Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² вируса Π³Ρ€ΠΈΠΏΠΏΠ° A / H1N1pdm09 ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ аминокислотных Π·Π°ΠΌΠ΅Π½ Π² Π³Π΅ΠΌΠ°Π³Π³Π»ΡŽΡ‚ΠΈΠ½ΠΈΠ½Π΅ (Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€-ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΌ ΠΈ Sa сайтах) ΠΈ Π² Π³Π΅Π½Π°Ρ…, ΠΊΠΎΠ΄ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ Π±Π΅Π»ΠΊΠΈ (PA, NP, M1, NS1). Доля рСзистСнтных ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² ΠΊ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ с Π°Π½Ρ‚ΠΈΠ½Π΅ΠΉΡ€Π°ΠΌΠΈΠ½ΠΈΠ΄Π°Π·Π½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Π² странах Π‘Π΅Π²Π΅Ρ€Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡƒΡˆΠ°Ρ€ΠΈΡ Π½Π΅ прСвысила 1 %, Π° ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌ Π°Π΄Π°ΠΌΠ°Π½Ρ‚Π°Π½Π° оказались Π½Π΅Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ всС ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ†ΠΈΡ€ΠΊΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹

    SARS-CoV-2 Establishes a Productive Infection in Hepatoma and Glioblastoma Multiforme Cell Lines

    No full text
    Severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and rapidly caused a pandemic that led to the death of >6 million people due to hypercoagulation and cytokine storm. In addition, SARS-CoV-2 triggers a wide array of pathologies, including liver dysfunction and neurological disorders. It remains unclear if these events are due to direct infection of the respective tissues or result from systemic inflammation. Here, we explored the possible infection of hepatic and CNS cell lines by SARS-CoV-2. We show that even moderate expression levels of the angiotensin-converting enzyme 2 (ACE2) are sufficient for productive infection. SARS-CoV-2 infects hepatoma Huh7.5 and HepG2 cells but not non-transformed liver progenitor or hepatocyte/cholangiocyte-like HepaRG cells. However, exposure to the virus causes partial dedifferentiation of HepaRG cells. SARS-CoV-2 can also establish efficient replication in some low-passage, high-grade glioblastoma cell lines. In contrast, embryonal primary astrocytes or neuroblastoma cells did not support replication of the virus. Glioblastoma cell permissiveness is associated with defects in interferon production. Overall, these results suggest that liver dysfunction during COVID-19 is not due to infection of these tissues by SARS-CoV-2. Furthermore, tumors may potentially serve as reservoirs for the virus during infection

    Cultivation of Cells in a Physiological Plasmax Medium Increases Mitochondrial Respiratory Capacity and Reduces Replication Levels of RNA Viruses

    No full text
    Changes in metabolic pathways are often associated with the development of various pathologies including cancer, inflammatory diseases, obesity and metabolic syndrome. Identification of the particular metabolic events that are dysregulated may yield strategies for pharmacologic intervention. However, such studies are hampered by the use of classic cell media that do not reflect the metabolite composition that exists in blood plasma and which cause non-physiological adaptations in cultured cells. In recent years two groups presented media that aim to reflect the composition of human plasma, namely human plasma-like medium (HPLM) and Plasmax. Here we describe that, in four different mammalian cell lines, Plasmax enhances mitochondrial respiration. This is associated with the formation of vast mitochondrial networks and enhanced production of reactive oxygen species (ROS). Interestingly, cells cultivated in Plasmax displayed significantly less lysosomes than when any standard media were used. Finally, cells cultivated in Plasmax support replication of various RNA viruses, such as hepatitis C virus (HCV) influenza A virus (IAV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and several others, albeit at lower levels and with delayed kinetics. In conclusion, studies of metabolism in the context of viral infections, especially those concerning mitochondria, lysosomes, or redox systems, should be performed in Plasmax medium
    corecore