116 research outputs found

    Quantum Size Effect transition in percolating nanocomposite films

    Full text link
    We report on unique electronic properties in Fe-SiO2 nanocomposite thin films in the vicinity of the percolation threshold. The electronic transport is dominated by quantum corrections to the metallic conduction of the Infinite Cluster (IC). At low temperature, mesoscopic effects revealed on the conductivity, Hall effect experiments and low frequency electrical noise (random telegraph noise and 1/f noise) strongly support the existence of a temperature-induced Quantum Size Effect (QSE) transition in the metallic conduction path. Below a critical temperature related to the geometrical constriction sizes of the IC, the electronic conductivity is mainly governed by active tunnel conductance across barriers in the metallic network. The high 1/f noise level and the random telegraph noise are consistently explained by random potential modulation of the barriers transmittance due to local Coulomb charges. Our results provide evidence that a lowering of the temperature is somehow equivalent to a decrease of the metal fraction in the vicinity of the percolation limit.Comment: 21 pages, 8 figure

    Longer fixation duration while viewing face images

    Get PDF
    The spatio-temporal properties of saccadic eye movements can be influenced by the cognitive demand and the characteristics of the observed scene. Probably due to its crucial role in social communication, it is argued that face perception may involve different cognitive processes compared with non-face object or scene perception. In this study, we investigated whether and how face and natural scene images can influence the patterns of visuomotor activity. We recorded monkeys’ saccadic eye movements as they freely viewed monkey face and natural scene images. The face and natural scene images attracted similar number of fixations, but viewing of faces was accompanied by longer fixations compared with natural scenes. These longer fixations were dependent on the context of facial features. The duration of fixations directed at facial contours decreased when the face images were scrambled, and increased at the later stage of normal face viewing. The results suggest that face and natural scene images can generate different patterns of visuomotor activity. The extra fixation duration on faces may be correlated with the detailed analysis of facial features

    Counting function fluctuations and extreme value threshold in multifractal patterns: the case study of an ideal 1/f1/f noise

    Full text link
    To understand the sample-to-sample fluctuations in disorder-generated multifractal patterns we investigate analytically as well as numerically the statistics of high values of the simplest model - the ideal periodic 1/f1/f Gaussian noise. By employing the thermodynamic formalism we predict the characteristic scale and the precise scaling form of the distribution of number of points above a given level. We demonstrate that the powerlaw forward tail of the probability density, with exponent controlled by the level, results in an important difference between the mean and the typical values of the counting function. This can be further used to determine the typical threshold xmx_m of extreme values in the pattern which turns out to be given by xm(typ)=2clnlnM/lnMx_m^{(typ)}=2-c\ln{\ln{M}}/\ln{M} with c=3/2c=3/2. Such observation provides a rather compelling explanation of the mechanism behind universality of cc. Revealed mechanisms are conjectured to retain their qualitative validity for a broad class of disorder-generated multifractal fields. In particular, we predict that the typical value of the maximum pmaxp_{max} of intensity is to be given by lnpmax=αlnM+32f(α)lnlnM+O(1)-\ln{p_{max}} = \alpha_{-}\ln{M} + \frac{3}{2f'(\alpha_{-})}\ln{\ln{M}} + O(1), where f(α)f(\alpha) is the corresponding singularity spectrum vanishing at α=α>0\alpha=\alpha_{-}>0. For the 1/f1/f noise we also derive exact as well as well-controlled approximate formulas for the mean and the variance of the counting function without recourse to the thermodynamic formalism.Comment: 28 pages; 7 figures, published version with a few misprints corrected, editing done and references adde

    Microanatomy of the trophosome region of Paracatenula cf. polyhymnia (Catenulida, Platyhelminthes) and its intracellular symbionts

    Get PDF
    Marine catenulid platyhelminths of the genus Paracatenula lack mouth, pharynx and gut. They live in a symbiosis with intracellular bacteria which are restricted to the body region posterior to the brain. The symbiont-housing cells (bacteriocytes) collectively form the trophosome tissue, which functionally replaces the digestive tract. It constitutes the largest part of the body and is the most important synapomorphy of this group. While some other features of the Paracatenula anatomy have already been analyzed, an in-depth analysis of the trophosome region was missing. Here, we identify and characterize the composition of the trophosome and its surrounding tissue by analyzing series of ultra-thin cross-sections of the species Paracatenula cf. polyhymnia. For the first time, a protonephridium is detected in a Paracatenula species, but it is morphologically reduced and most likely not functional. Cells containing needle-like inclusions in the reference species Paracatenula polyhymnia Sterrer and Rieger, 1974 were thought to be sperm, and the inclusions interpreted as the sperm nucleus. Our analysis of similar cells and their inclusions by EDX and Raman microspectroscopy documents an inorganic spicule consisting of a unique magnesium–phosphate compound. Furthermore, we identify the neoblast stem cells located underneath the epidermis. Except for the modifications due to the symbiotic lifestyle and the enigmatic spicule cells, the organization of Paracatenula cf. polyhymnia conforms to that of the Catenulida in all studied aspects. Therefore, this species represents an excellent model system for further studies of host adaptation to an obligate symbiotic lifestyle

    <sup>89</sup>Zr-pembrolizumab imaging as a non-invasive approach to assess clinical response to PD-1 blockade in cancer

    Get PDF
    Background: Programmed cell death protein 1 (PD-1) antibody treatment is standard of care for melanoma and non-small-cell lung cancer (NSCLC). Accurately predicting which patients will benefit is currently not possible. Tumor uptake and biodistribution of the PD-1 antibody might play a role. Therefore, we carried out a positron emission tomography (PET) imaging study with zirconium-89 ( 89Zr)-labeled pembrolizumab before PD-1 antibody treatment. Patients and methods: Patients with advanced or metastatic melanoma or NSCLC received 37 MBq (1 mCi) 89Zr-pembrolizumab (∼2.5 mg antibody) intravenously plus 2.5 or 7.5 mg unlabeled pembrolizumab. After that, up to three PET scans were carried out on days 2, 4, and 7. Next, PD-1 antibody treatment was initiated. 89Zr-pembrolizumab tumor uptake was calculated as maximum standardized uptake value (SUV max) and expressed as geometric mean. Normal organ uptake was calculated as SUV mean and expressed as a mean. Tumor response was assessed according to (i)RECIST v1.1. Results: Eighteen patients, 11 with melanoma and 7 with NSCLC, were included. The optimal dose was 5 mg pembrolizumab, and the optimal time point for PET scanning was day 7. The tumor SUV max did not differ between melanoma and NSCLC (4.9 and 6.5, P = 0.49). Tumor 89Zr-pembrolizumab uptake correlated with tumor response (P trend = 0.014) and progression-free (P = 0.0025) and overall survival (P = 0.026). 89Zr-pembrolizumab uptake at 5 mg was highest in the spleen with a mean SUV mean of 5.8 (standard deviation ±1.8). There was also 89Zr-pembrolizumab uptake in Waldeyer's ring, in normal lymph nodes, and at sites of inflammation. Conclusion: 89Zr-pembrolizumab uptake in tumor lesions correlated with treatment response and patient survival. 89Zr-pembrolizumab also showed uptake in lymphoid tissues and at sites of inflammation

    Swimming in a Sea of Shame: Incorporating Emotions into Explanations of Institutional Reproduction and Change

    Get PDF
    We theorize the role in institutional processes of what we call the shame nexus, a set of shame-related constructs: felt shame, systemic shame, sense of shame, and episodic shaming. As a discrete emotion, felt shame signals to a person that a social bond is at risk and catalyzes a fundamental motivation to preserve valued bonds. We conceptualize systemic shame as a form of disciplinary power, animated by persons’ sense of shame, a mechanism of ongoing intersubjective surveillance and self-regulation. We theorize how the duo of the sense of shame and systemic shame drives the self-regulation that underpins persons’ conformity to institutional prescriptions and institutional reproduction. We conceptualize episodic shaming as a form of juridical power used by institutional guardians to elicit renewed conformity and reassert institutional prescriptions. We also explain how episodic shaming may have unintended effects, including institutional disruption and recreation, when it triggers sensemaking among targets and observers that can lead to the reassessment of the appropriateness of institutional prescriptions or the value of social bonds. We link the shame nexus to three broad categories of institutional work

    To Be or Not to Be a Flatworm: The Acoel Controversy

    Get PDF
    Since first described, acoels were considered members of the flatworms (Platyhelminthes). However, no clear synapomorphies among the three large flatworm taxa - the Catenulida, the Acoelomorpha and the Rhabditophora - have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives
    corecore