2,061 research outputs found

    Ewing's Sarcoma.

    Get PDF
    In 1920, during a meeting of the New York Pathological Society, James Ewing described an unusual tumor in a 14-year-old girl as a “diffuse endothelioma of bone.”1 The tumor had initially been diagnosed as an osteosarcoma, but its architecture, the morphologic features of its cells, and its marked sensitivity to radiation therapy led Ewing to consider it as a distinct entity, going so far as to hypothesize an endothelial-cell origin.1 He later reported similar tumors in other adolescents, which pathologists variously referred to as Ewing’s sarcoma, Askin’s tumor, and peripheral primitive neuroectodermal tumor, on the basis of their shared morphologic and immunohistochemical features. The first landmark discovery toward unequivocally diagnosing Ewing’s sarcoma was made more than 70 years later, when the most frequent of the chromosomal translocations that define the tumor was identified.2 A century after Ewing’s seminal observation, the cancer that bears his name has become a paradigm for solid-tumor development after a single genetic rearrangement. In this review, we discuss the clinical features and pathogenesis of Ewing’s sarcoma, along with current and experimental therapeutic approaches. From the mechanistic point of view, we review the way in which a unique chromosomal translocation harnesses the epigenetic machinery of permissive cells to rewire their transcriptome and initiate a heterogeneous cancer that can elude even the most intensive conventional therapy available

    IMPs: an RNA-binding protein family that provides a link between stem cell maintenance in normal development and cancer.

    Get PDF
    IMPs, also known as insulin-like growth factor 2 (IGF2) messenger RNA (mRNA)-binding proteins (IGF2BPs), are highly conserved oncofetal RNA-binding proteins (RBPs) that regulate RNA processing at several levels, including localization, translation, and stability. Three mammalian IMP paralogs (IMP1-3) have been identified that are expressed in most organs during embryogenesis, where they are believed to play an important role in cell migration, metabolism, and stem cell renewal. Whereas some IMP2 expression is retained in several adult mouse organs, IMP1 and IMP3 are either absent or expressed at very low levels in most tissues after birth. However, all three paralogs can be re-expressed upon malignant transformation and are found in a broad range of cancer types where their expression often correlates with poor prognosis. IMPs appear to resume their physiological functions in malignant cells, which not only contribute to tumor progression but participate in the establishment and maintenance of tumor cell hierarchies. This review summarizes our current understanding of the functions of IMPs during normal development and focuses on a series of recent observations that have provided new insight into how their physiological functions enable IMPs to play a potentially key role in cancer stem cell maintenance and tumor growth

    Tumor-Derived Mesenchymal Stem Cells Use Distinct Mechanisms to Block the Activity of Natural Killer Cell Subsets.

    Get PDF
    Mesenchymal stem cells (MSCs) display pleiotropic functions, which include secretion of soluble factors with immunosuppressive activity implicated in cancer progression. We compared the immunomodulatory effects on natural killer (NK) cells of paired intratumor (T)- and adjacent non-tumor tissue (N)-derived MSCs from patients with squamous cell lung carcinoma (SCC). We observed that T-MSCs were more strongly immunosuppressive than N-MSCs and affected both NK function and phenotype, as defined by CD56 expression. T-MSCs shifted NK cells toward the CD56 <sup>dim</sup> phenotype and differentially modulated CD56 <sup>bright/dim</sup> subset functions. Whereas MSCs affected both degranulation and activating receptor expression in the CD56 <sup>dim</sup> subset, they primarily inhibited interferon-γ production in the CD56 <sup>bright</sup> subset. Pharmacological inhibition of prostaglandin E2 (PGE2) synthesis and, in some MSCs, interleukin-6 (IL-6) activity restored NK function, whereas NK cell stimulation by PGE2 alone mimicked T-MSC-mediated immunosuppression. Our observations provide insight into how stromal responses to cancer dampen NK cell activity in human lung SCC

    Tumor-host interactions: the role of inflammation.

    Get PDF
    It is well established that interactions between tumor cells and the host tissue stroma play a key role in determining whether and how any given solid malignancy will develop. In most cases, tumor cells hijack stromal cell functions for their own benefit and ultimately dictate the rules of engagement to the host tissue microenvironment. However, the contribution of the different stromal cell components to tumor growth remains to be clarified. Because most solid tumors are accompanied by a local inflammatory response, it has long been thought that inflammation and carcinogenesis are related. If formal proof that cancer can be initiated by inflammation in the absence of exogenous carcinogens is still lacking, there is abundant evidence that the inflammatory response can play a central role in modulating tumor growth and progression. This review will discuss some of the mechanisms whereby inflammation can both enhance and inhibit tumor growth

    Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials

    Get PDF
    A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approximations(Chebyshev, Legendre, Butterworth) are shown to be a special cases of proposed approximation method

    Synovial sarcoma: when epigenetic changes dictate tumour development.

    Get PDF
    Synovial sarcoma is a highly aggressive soft tissue malignancy that often affects adolescents and young adults. It is associated with a unique chromosomal translocation that results in the formation and expression of the fusion gene SS18-SSX, which underlies its pathogenesis. Although SS18-SSX provides a potentially unique therapeutic target, all attempts to neutralise it have been unsuccessful thus far. When complete surgical removal of the tumour fails, therapy is limited to largely ineffective cytotoxic drug regimens. Nevertheless, recent discoveries about the mechanisms of SS18-SSX protein function have provided insight into potential alternative therapeutic strategies. SS18-SSX displays oncogenic activity through protein-protein interactions and participation in chromatin remodelling complexes. This review summarises our current understanding of the function of SS18-SSX and the mechanisms by which it alters the epigenetic landscape of permissive cells to induce transformation and the subsequent development of synovial sarcoma

    Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation.

    Get PDF
    Metastasis depends on the ability of tumor cells to establish a relationship with the newly seeded tissue that is conducive to their survival and proliferation. However, the factors that render tissues permissive for metastatic tumor growth have yet to be fully elucidated. Breast tumors arising during pregnancy display early metastatic proclivity, raising the possibility that pregnancy may constitute a physiological condition of permissiveness for tumor dissemination. Here we have shown that during murine gestation, metastasis is enhanced regardless of tumor type, and that decreased NK cell activity is responsible for the observed increase in experimental metastasis. Gene expression changes in pregnant mouse lung and liver were shown to be similar to those detected in premetastatic sites and indicative of myeloid cell infiltration. Indeed, myeloid-derived suppressor cells (MDSCs) accumulated in pregnant mice and exerted an inhibitory effect on NK cell activity, providing a candidate mechanism for the enhanced metastatic tumor growth observed in gestant mice. Although the functions of MDSCs are not yet understood in the context of pregnancy, our observations suggest that they may represent a shared mechanism of immune suppression occurring during gestation and tumor growth

    The fusion protein SS18-SSX1 employs core Wnt pathway transcription factors to induce a partial Wnt signature in synovial sarcoma.

    Get PDF
    Expression of the SS18/SYT-SSX fusion protein is believed to underlie the pathogenesis of synovial sarcoma (SS). Recent evidence suggests that deregulation of the Wnt pathway may play an important role in SS but the mechanisms whereby SS18-SSX might affect Wnt signaling remain to be elucidated. Here, we show that SS18/SSX tightly regulates the elevated expression of the key Wnt target AXIN2 in primary SS. SS18-SSX is shown to interact with TCF/LEF, TLE and HDAC but not β-catenin in vivo and to induce Wnt target gene expression by forming a complex containing promoter-bound TCF/LEF and HDAC but lacking β-catenin. Our observations provide a tumor-specific mechanistic basis for Wnt target gene induction in SS that can occur in the absence of Wnt ligand stimulation

    Selective suppression of CD44 in keratinocytes of mice bearing an antisense CD44 transgene driven by a tissue-specific promoter disrupts hyaluronate metabolism in the skin and impairs keratinocyte proliferation

    Get PDF
    CD44 is a broadly distributed polymorphic glycoprotein that serves as the principal cell-surface receptor for hyaluronate. Although CD44-mediated cell interaction with hyaluronate has been implicated in a variety of physiologic events, including cell-cell and cell-substrate adhesion, cell migration, proliferation, and activation, as well as hyaluronate uptake and degradation, the biologic role of CD44 in vivo in various tissues remains to be determined. In the present work we have developed transgenic mice that express an antisense CD44 cDNA driven by the keratin-5 promoter. These mice lack detectable CD44 expression in skin keratinocytes and corneal epithelium and display abnormal hyaluronate accumulation in the superficial dermis and corneal stroma, distinct morphologic alterations of basal keratinocytes and cornea, and defective keratinocyte proliferation in response to mitogen and growth factors. These alterations are reflected by a decrease in skin elasticity, impaired local inflammatory response and tissue repair, delayed hair regrowth, and failure of the epidermis to undergo hyperplasia in response to carcinogen. Our observations indicate that two major functions of CD44 in skin are the regulation of keratinocyte proliferation in response to extracellular stimuli and the maintenance of local hyaluronate homeostasi
    corecore