40 research outputs found

    Operator Method for Nonperturbative Calculation of the Thermodynamic Values in Quantum Statistics. Diatomic Molecular Gas

    Get PDF
    Operator method and cumulant expansion are used for nonperturbative calculation of the partition function and the free energy in quantum statistics. It is shown for Boltzmann diatomic molecular gas with some model intermolecular potentials that the zeroth order approximation of the proposed method interpolates the thermodynamic values with rather good accuracy in the entire range of both the Hamiltonian parameters and temperature. The systematic procedure for calculation of the corrections to the zeroth order approximation is also considered.Comment: 22 pages, 7 Postscript figures, accepted for publication in Journal of Physics

    Metal-support interaction and charge distribution in ceria-supported Au particles exposed to CO

    Full text link
    Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ− atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy

    Contribution to understanding the mathematical structure of quantum mechanics

    Full text link
    Probabilistic description of results of measurements and its consequences for understanding quantum mechanics are discussed. It is shown that the basic mathematical structure of quantum mechanics like the probability amplitudes, Born rule, commutation and uncertainty relations, probability density current, momentum operator, rules for including the scalar and vector potentials and antiparticles can be obtained from the probabilistic description of results of measurement of the space coordinates and time. Equations of motion of quantum mechanics, the Klein-Gordon equation, Schrodinger equation and Dirac equation are obtained from the requirement of the relativistic invariance of the space-time Fisher information. The limit case of the delta-like probability densities leads to the Hamilton-Jacobi equation of classical mechanics. Many particle systems and the postulates of quantum mechanics are also discussed.Comment: 21 page

    Ion production by lasers using high-power densities in a near infrared region

    Get PDF
    Results are presented of experiments on ion production from Ta targets using a short pulse (350-600 ps in focus) illumination with focal power densities exceeding 1014 Wcm-2 at the wavelength of an iodine photodissociation laser (1.315 μm) and its harmonics. Strong evidence of the existence of tantalum ions with the charge state +45 near the target surface was obtained by X-ray spectroscopy methods. The particle diagnostics point to the existence of frozen high charge states (4 MeV) for the highest observed charge states. A tentative theoretical explanation of the observed anomalous charge state freezing phenomenon in the expanding plasma produced by a subnanosecond laser pulse is give

    Noble metal nanoparticles in organic matrix

    No full text
    The purpose of this work is the synthesis and study of the properties of nanocomposite structures created by noble metal (silver) nanoparticles (NP's), an exciting class of materials with unique properties differ from both bulk and atomic behavior, which are self-organize in a thin organic film of copper phthalocyanine (CuPc). The structure and morphology of this material, depending on the amount of deposited silver, was studied in ultrahigh vacuum using transmission electron microscopy (TEM) and photoelectron spectroscopy (PES). Metallic atoms deposited on the surface of an organic substrate diffuse into the substrate, forming NPs with a narrow size distribution, which correlates with the content of the deposited metal. With the help of high-resolution TEM, the distance between the atomic planes of individual silver nanoparticles was determined and the steady gathering of individual nanoparticles into agglomerates and then into nanocrystals with inter-crystallite boundaries was observed. PES revealed a generally weak interaction between silver NPs and the organic matrix. However, a strong band bending in the organic film at small coatings with metal atoms was observed
    corecore