331 research outputs found

    Probing Charged Higgs Boson Couplings at the FCC-hh Collider

    Full text link
    Many of the new physics models predicts a light Higgs boson similar to the Higgs boson of the Standard Model (SM) and also extra scalar bosons. Beyond the search channels for a SM Higgs boson, the future collider experiments will explore additional channels that are specific to extended Higgs sectors. We study the charged Higgs boson production within the framework of two Higgs doublet models (THDM) in the proton-proton collisions at the FCC-hh collider. With an integrated luminosity of 500 fb−1^{-1} at very high energy frontier, we obtain a significant coverage of the parameter space and distinguish the charged Higgs-top-bottom interaction within the THDM or other new physics models with charged Higgs boson mass up to 1 TeV.Comment: 22 pages, 26 figures, 6 table

    Top quark FCNC couplings at future circular hadron electron colliders

    Full text link
    A study of single top quark production via flavor changing neutral current interactions at tqγtq\gamma vertices is performed at future circular hadron electron collider. The signal cross sections for the processes e−p→e−W±q+Xe^{-}p\to e^{-}W^{\pm}q+X and e−p→e−W±bq+Xe^{-}p\to e^{-}W^{\pm}bq+X in the collision of electron beam with energy Ee=E_e= 60 GeV and proton beam with energy Ep=E_p= 50 TeV are calculated. In the analysis, the invariant mass distributions of three jets reconstructing top quark mass, requiring one b-tagged jet and other two jets reconstructing the WW mass are used to count signal and background events after all selection cuts. The upper limits on the anomalous flavor changing neutral current tqγtq\gamma couplings are found to be λq<\lambda_q < 0.01 at future circular hadron electron collider for Lint=100L_{int}=100 fb−1^{-1} with the fast simulation of detector effects. Signal significance depending on the couplings λq\lambda_q is analyzed and an enhanced sensitivity is found to the branching ratio BR(t→qγt\to q\gamma) at the future circular hadron electron collider when compared to the current experimental results.Comment: 11 pages, 4 Figures, 4 Tables, to appear in Phys. Rev.

    Magnetic equivalent circuit model of surface type fractional-slot permanent magnet synchronous generator

    Get PDF
    Design of permanent magnet synchronous machines becomes more of an issue for all systems lately. There are many parameters that have influence for machine design. Each parameter should have optimized and their effects on the system should be determined. Any desired pre-design have been done for machine design except a few paper and it only showed by of Finite element analysis (FEA). In this article, analytical method is used in permanent magnet synchronous machine design and the effects of geometric on the performance of machine are presented. Magnetic equivalent circuit (MEC) model is used as numeric method. It is observed that the proposed MEC model is pertinent to Speed PC-BDC model and FEA. Besides proposed MEC model provides to calculate performances of the machines which have the desirable slot/pole combinations correctly. Proposed model is applied on the recently increased fractional slot direct drive synchronous generators

    Dynamics and torque analysis of permanent magnet synchronous generator with soft magnetic composite material

    Get PDF
    Usage of permanent magnet synchronous machines (PMSM) in wind turbines recently became more of an issue. The development in permanent magnet synchronous machines through the latest technologies, especially about machine design, increases the importance of those machines. Developments in materials technology implement the development of cost effective and profitable products on electric machines and bring simplicity in design. Especially Soft Magnetic Composite (SMC) materials became to be used recently in machine designs due to its advantages such as low costs and providing 3D flux paths. In this work the 2D magnetic equivalent circuit (MEC) of PMSM machine, which includes SMC in its stator part, was composed and stated magnetic equivalent circuit was verified by finite element method. Also torque and radial forces of PMSM were calculated as well. When SMC materials are used in electric machines, flux flows in 3D. 3D finite element method takes quite long time. Due to 2D MEC analysis that was used in our work, the analysis periods become remarkably shorter. Besides the proposed MEC model enables to calculate performances of the machines, which have the desirable slot/pole combinations, correctly. Proposed model is applied on the recently improved fractional slot direct drive synchronous generators
    • …
    corecore