9 research outputs found

    Preserving Charge and Oxidation State of Au(III) Ions in an Agent-Functionalized Nanocrystal Model System

    Get PDF
    Supporting functional molecules on crystal facets is an established technique in nanotechnology. To preserve the original activity of ionic metallorganic agents on a supporting template, conservation of the charge and oxidation state of, the active center is indispensable. We. present a model system of a metallorganic agent that, indeed, fulfills this design criterion on a technologically relevant metal support With potential Impact on Au(III)-porphyrin-functionalized nanoparticles for an improved anticancer-drug delivery. Employing scanning tunneling microscopy and -spectroscopy in combination with photoemission spectroscopy,we clarify at the single-molecule level the underlying mechanisms of this exceptional adsorption mode. It is based on the balance between a high-energy oxidation state and an electrostatic screening-response of the surface (image charge). Modeling with first principles methods reveals submolecular details of the metal-ligand bonding interaction and completes the study by providing an Illustrative electrostatic.. model relevant for ionic metalorganic agent molecules, in general

    How do places of origin influence access to mobility in the global age? An analysis of the influence of vulnerability and structural constraints on Senegalese translocal livelihood strategies

    No full text
    Literature has often underlined the relevance of mobility for modern lifestyles. However, it has frequently overlooked that mobility has long been the rule in Senegal. There, mobility has allowed households to cope with environmental and economic vulnerability. Over the last decades, households have extended their traditional mobility through internal and international migration. This paper investigates how place-related vulnerability and structural constraints influence the way Senegalese households construct translocal spaces and livelihood strategies in the global age. For this purpose, a multi-sited ethnographic study has been conducted at four villages in Senegal and at two immigration destinations in Italy and Spain. The empirical results show that vulnerability and structural constraints in the home place do not prevent households from adopting strategies based on mobility, but rather influence the composition of translocal spaces, the ability to move between places, and the construction of translocal livelihood strategies

    Reversible biofunctionalization of surfaces with a switchable mutant of avidin

    No full text
    Label-free biosensors detect binding of prey molecules (″analytes″) to immobile bait molecules on the sensing surface. Numerous methods are available for immobilization of bait molecules. A convenient option is binding of biotinylated bait molecules to streptavidin-functionalized surfaces, or to biotinylated surfaces via biotin-avidin-biotin bridges. The goal of this study was to find a rapid method for reversible immobilization of biotinylated bait molecules on biotinylated sensor chips. The task was to establish a biotin-avidin-biotin bridge which was easily cleaved when desired, yet perfectly stable under a wide range of measurement conditions. The problem was solved with the avidin mutant M96H which contains extra histidine residues at the subunit-subunit interfaces. This mutant was bound to a mixed self-assembled monolayer (SAM) containing biotin residues on 20% of the oligo(ethylene glycol)-terminated SAM components. Various biotinylated bait molecules were bound on top of the immobilized avidin mutant. The biotin-avidin-biotin bridge was stable at pH ≥3, and it was insensitive to sodium dodecyl sulfate (SDS) at neutral pH. Only the combination of citric acid (2.5%, pH 2) and SDS (0.25%) caused instantaneous cleavage of the biotin-avidin-biotin bridge. As a consequence, the biotinylated bait molecules could be immobilized and removed as often as desired, the only limit being the time span for reproducible chip function when kept in buffer (2-3 weeks at 25 °C). As expected, the high isolectric pH (pI) of the avidin mutant caused nonspecific adsorption of proteins. This problem was solved by acetylation of avidin (to pI > 5), or by optimization of SAM formation and passivation with biotin-BSA and BSA

    Literaturverzeichnis

    No full text
    corecore